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ABSTRACT

A procedure for the development of a simple boundary layer

turbulence model to account for different physical effects is

described; the method is applied here to produce models for both

pressure gradient and mainstream turbulence effects. Asymptotic

theory is used to isolate the leading terms in an expansion for

the mean velocity profile for high Reynolds numbers for both the

inner and outer regions of a nominally steady two-dimensional

boundary layer. The velocity profile in the outer layer satis-

fies a partial differential equation containing a Reynolds stress

temi and this term is modeled by a simple eddy viscosity function

which contains two parameters. The velocity profile in the inner

wall layer is modeled using an analytical expression which has

been previously derived by consideration of the observed charac-

teristics of the time-dependent flow in the wall layer and which

contains a single independent parameter. For a self-similar

flow, the outer layer equation becomes an ordinary differential

equation; this equation is solved numerically and in conjunc-

tion with the analytical inner layer profile, a composite pro-

file spanning the entire boundary layer is defined. This com-

posite profile contains three parameters which may be adjusted

* I systematically to obtain a best fit to a given set of experimen-

tal data.



A computer optimization code is described in which any or

all of the three profile parameters may be varied. This optimi-

zation code may be used simply to obtain a close analytical

representation of a given set of data. The primary use described

here, however, is to develop correlations for various physical

effects from the results of the optimizations. In particular,

correlations for the effects of mainstream pressure gradients

and mainstream turbulence for the profile parameters are given.

In principle, these correlations may then be used in a predic-

tion method.
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1. INTRODUCTION

Turbulent boundary layers occur in a wide variety of

engineering applications including, for example, flows over

turbine blades, airfoils, and in subsonic diffusers. In these

and many other situations it is important to be able to develop

the capability to accurately predict characteristics such as

skin friction, lift, drag, and the onset of boundary layer

separation. At present, the complex nature of turbulence

seems to preclude any predictive analysis based on first prin-

ciples. For a turbulent boundary layer which is steady in the

time-mean sense, the classical approach to prediction has been

to attempt to deal with the Reynolds time-averaged equations

for the mean velocity components. These equations contain

unknown functions referred to as Reynolds stresses; physically

these terms are related to long time averages of products of

fluctuations of the velocity components about their mean values.

As a first step, the development of any prediction method

requires a model to represent the behavior of the Reynolds

stress terms. The objective of this study is to develop an

approach which can be used to investigate the influence of

various physical effects on the turbulent boundary layer and

to incorporate these effects in a simple turbulence model.

To this end, a general optimization code is developed in



which the parameters in the turbulence model may be varied

systematically to obtain the best representation of measured

mean profile data. As one example of how this code may be

used, the method is applied to determine the influence of

pressure gradients on the mean profile and a correlation for

pressure gradient effects is developed. As a second example,

the method is applied to some recent constant pressure pro-

file data with mainstream turbulence and a correlation is obtained

to reflect the effects of mainstream turbulence.

An immediate problem which arises in the modeling process

is that the dynamics of turbulent boundary layers are not well

understood. Previous investigators have attempted to resolve

this problem by postulating the functional form for the Reynolds

stress terms. These functional forms normally contain a num -

ber of unknown constants which are selected in a procedure often

known as "computer optimization." The details of this procedure

vary with the originator of the particular model and invariably

are not well documented. However, the general approach is

that particular data sets usually consisting of measured velo-

city profiles at numerous streanwiise locations are "predicted"

using various combinations of values of the "constants" asso-

ciated with a given model. Some type of subjective Judgement

is then made as to which set of values of the constants best

-2-



"predict" as many data sets as possible. The approach adopted

in this study is rather different and will now be discussed in

detail.

An ideal approach to the modeling problem would be to

isolate the primary features in the time-dependent turbulent

flow and to pattern the turbulence model after motions which

reflect the true physics of the turbulent boundary layer. Such

a model would adequately replace the information lost in the

time averaging and would presumeably not contain or require a

large numnber of adjustable constants. This approach is par-

tially adopted in this study in the model used for the inner

region of the turbulent boundary layer.

Since the objective is to isolate which effects are impor-

tant and which are not for large Reynolds number, singular per-

turbation theory and the method of matched asymptotic expan-

sions are used throughout the present study. It is worthwhile

at this stage to swumarize same of the main results concerning

the asymptotic structure of the time mean boundary layer equa-

tions in the limit of large Reynolds numnbers; these results

have formally been demonstrated by Fendell (1972) and Mellor

(1972). The turbulent boundary layer is a composite double

layer consisting of a relatively thick outer layer having a

thickness O(u*), (where u* u uT/Ue(x) is the ratio of friction

-3-



to mainstream velocity) and a thin inner layer having a thick-

ness O(l/(Re LP)), where Re is the Reynolds number. In the join-

ing region between the two layers, the velocity profile must be

logarithmic for a self consistent asymptotic description. The

complete mathematical results for the streamwise momentm

equations are summnarized in §2. One particularly important

result concerns the inner layer and is that, to leading order,

the convective terms are negligible in the time mean equations;

consequently, if the mean profile is known in the inner layer,

the Reynolds stress may be calculated and vice versa. In the

present study, rather than a model for Reynolds stresses, a

model for the inner region velocity profile is used; this model

is based upon the observed coherent structure of the wall layer

flow and will now be briefly described.

Over the past decade, it has been well documented (see,

for example, Kline & Runstadler, 1959; Kline et al., 1967;

Corino & Brodkey, 1969; Wlllmarth, 1975) that there is a con-

siderable degree of ordered structure in the time dependent

flow in the wall layer of a turbulent boundary layer. In par-

ticular, it is well known that there are two important phases

associated with an observed cyclic behavior of the wall layer

flow. In the first phase, if attention is focused on a fixed

small area of the plate, the wall layer will be observed to

-4-



be in the quiescent state (Kline et al., 1967) for a majority

of the total observation time. During this quiescent period,

the wall layer streaks are observed with what appear to be

longitudinal counter-rotating vortices between the streaks, the

wall layer flow is relatively well ordered and no important

interactions occur between the wall layer and the flow in the

outer portion of the boundary layer; in this state, the wall

layer may be regarded as passive. Eventually the second phase

occurs which is generally known as the bursting phenomenon and 4

which is characterized by a rapid and violent ejection from theJ

wall layer into the outer layer. The ejection is of relatively

short duration and is followed by an inrush of fluid from the

outer layer; the streak stru~cture appears again very rapidly and

another quiescent period begins. Although many questions exist

as to the causes and effects of these and other subsidiary

events, the gross features of the cyclic behavior described

above are nowwell established.

To incorporate such information in a prediction method

for the time-mean flow, it is necessary in principle to analyze

a typical event in the turbulence and then assess the contribu-

tion of this event to the time-mean quantities. To this end,

Walker and Abbott (1977) argue, by consideration of the observed

length and time scales in the wall layer, that during the

quiescent period the equations for all three velocity components

-5 -



must be linear and of the heat conduction type in the limit of

large Reynolds number; in other words, the convective terms

in the Navier-Stokes equations are negligible to leading order

whenever the wall layer flow is in the quiescent state. Walker

and Scharnhorst (1977) then go on to consider all possible

similarity solutions of these equations which are compatible

with theory and experiment; the similarity solutions correspond

to the organized motion between streaks during the quiescent

period and are radically different from the oscillatory Stokes

type solutions which form the basis of the Van Driest (1956)

model. Walker and Scharnhorst (1977) compute a time-average
of the similarity solutions over a quiescent period and assess

which solutions produce an important contribution to the time-

mean profile and which do not. The final result is an analy-

tical model which will be giver. in 92 for the inner region pro-

file and which contains a single parameter S that is related to

the mean period between bursts. The contribution to the mean

profile during the bursting process and breakdown of the wall

layer flow is neglected on the grounds that the breakdown is

of short duration relative to the quiescent period; note that

there are various theoretical reasons as well as a body of

experimental evidence that verify that the period of breakdown

must be small with respect to the quiescent period. On the

-6-



other hand, the vertical velocity (Walker & Abbott, 1977 and

Walker & Scharnhorst, 1977) is so small during the quiescent

period that there can be no contribution to the Reynolds stress

to leading order during this period of time and the major con-

tribution to the Reynolds stress must be made during the burst-

ing process. Consequently, in this theoretical description of

the wall layer flow, the dominant contribution to the mean pro-

file occurs during the quiescent period, while the major con-

tribution to the Reynolds stress occurs during the breakdown

phase; both mean quantities are directly related to each through

the leading order time-mean equations in the wall layer (since

the convective terms are negligible to leading order).

In principle, it is desirable to develop a model for the

outer layer which is also based on the observed dynamics of

the time dependent flow in the outer region. However, the outer

region problem is more complex ; it appears necessary to model

the Reynolds stress terms directly and unfortunately the dynamics

of the outer layer are not well understood. In the outer region,

large scale motions are observed which appear to be recirculating

agglomerations of numerous smaller scale structures; these

smaller scale structures have dimensions on the general magni-

tude of 100 wall layer units (y+) and appear at times to be

intensely vorticular in nature. At any stage, these small

-7-



vorticular structures are in various stages of coalescence and

decay and when they pass close to the wall layer, are observed

to induce eruptions of fluid. A number of authors have sug-

gessted that it is the vortex motion in the outer layer which

induces the wall layer bursting (Nychas et al., 1973; Doligalski

& Walker, 1978; Walker, 1978) and leads to the creation of new

vortex structures in the outer layer; a regenerative mechanism

for the production of new turbulence has recently been proposed
by Doligalski, Smith & Walker (1981) and Doligalski (1981) on

the basis of the observ.4 unsteady effect of vortices on wall

boundary layers. Thes-- studies demonstrate that for the vortex

motions considered (tw,-dimensional vortices convected in a uni-

form flow and in a shear flow and ring vortices above a plane

wall) that an eruption of the boundary layer flow near the wall

will occur. However, these studies are as yet in an explora-

tory stage and, while a physical mechanism for the bursting

is indicated, it is not yet possible to develop a constitutive
hi

model for the outer layer on this basis.

The bursting phenomena is a complex time-dependent viscous-

inviscid interaction between the inner and outer layers which

leads to the introduction of new vorticity into the outer layer

and which occurs intermittently. However, during these brief

periods of localized breakdown of the two layer structure, the

"8-



majority of the contribution to the outer layer (and inner

layer) Reynolds stress occurs. For this reason, the simplifi-

cations which were possible in obtaining the wall layer model

are not possible and it appears necessary to consider a typical

burst and time average the results in order to model the -'vr

term. As discussed by Doligalski & Walker (1978) and Doligalski,

Smith & Walker (1981) the inviscid-viscous interaction is a

formidable theoretical problem at present; moreover, many other

aspects of the outer layer are still not well understood and,

at present, development of an outer layer model based on the

characteristics of time dependent flow in the outer layer is

not feasible.

For these reasons, a conventional type of eddy viscosity

model is used in the present study for closure in the outer

layer; this type of model is used here because of its simpli-

city and the good degree of success it has had in other pre-

diction methods. The eddy viscosity hypothesis is commonly

termed a first-order closure scheme; it assumes that there is

a functional relation between the Reynolds stress and the

mean profile and further that the Reynolds stress may be written

as an eddy viscosity function times the mean velocity gradient.

Here a model for the eddy viscosity which is similar to the

Cebecl-Smith (1974) and Mellor & Herring models (1968) will

-9-



be adopted; this model is a monotonically increasing function

of the outer variable behaving linearly with slope K (the von

Karman "constant") near the logarithmic zone and approaching

a value K at the boundary layer edge. Note that the wall

layer profile model contains i in addition to the cycle time

parameter S. Consequently the present turbulence model contains

the three parameters (s,K,K).

It is common practice in many turbulence models to assume

constant universal values for the parameters appearing in the

model. Scharnhorst (1978), for example, has attempted a pre-

diction method with (s = 10.495, K = 0.41, K = .0168)(the latter

two values are also used by Cebeci & Smith, 1974); however, it

was determined(after the prediction method was compared to a

number of data sets,)that the velocity profiles were not well

predicted, particularly in flows with pressure gradient. The

objective of this study is to investigate a systematic way of

determining any trends in these parameters for various effects

such as pressure gradients or mainstream turbulencewith the

ultimate goal of obtaining correlations of these parameters

for use in a prediction method.

This will be carried out here in a somewhat different way

from previous investigations. It has become common practice

in recent times to determine values of "universal constants"

-10-



in turbulence models through a process known as computer

optimization; this procedure is often associated with turbu-

lence models that have a sizeable number of adjustable constants

* (see, for example, Murthy, 1977) and is usually carried out

as follows. One data set or a number of data sets are chosen,

each of which consists of a number of measured profiles at

various downstream locations from some initial point; a pre-

diction method with a preassigned set of constants in the

turbulence model is started at the initial data station and

the downstream data is "predicted." On the basis of compar-

ison with either the integral parameters and/or the skin

friction coefficient, a decision is made as to whether adjust

the "constants" in the turbulence model to achieve better
"predictions"; the prediction method is then used to obtain

another "prediction" of the downstream data. This iterative

method continues until some optimal set of constants is

obtained.

One undesireable feature of this scheme is that the

basis for adjusting the constants is usually not clearly

defined and in any case is based upon comparisons with the

gross properties such as the integral quantities or quan-

tities obtained indirectly from experiment such as the skin

friction. The details of how the iterative process is carried
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out and what criteria are used to decide on the optimal set of

constants are normally not supplied in the literature, parti-

cularly when the number of data sets involved are large; pre-

sumeably the choice is based ultimately on some type of inte-

grated subjective average.

In the present study, the trends in the turbulence model

parameters and eventually the correlations are also determined by

comparison to experimental data but the procedure is differ-

ent and precisely defined. First, only equilibrium data sets

are considered; an equilibrium turbulent boundary layer, by

definition, is a boundary layer in which the mainstream velo-

city varies algebraically with streanmise distance. Such a

boundary is expected (Clauser, 1956; Mellor, 1972; Fendell,

1972; Scharnhorst et al., 1978) to successively approach a

self-similar flow at large distances from wherever the boundary

layer flow is initiated. For this reason, equilibrium boundary

layers have historically been of considerable interest.

It is worthwhile to remark, however, that, in order for

self-similar velocity profiles to exist, equilibrium is a

necessary but by no means a sufficient condition, To expand

on this point, consider the case of laminar boundary layers

where similar solutions satisfy the well known Falkner-Skan

equation. The existence of such solutions in laminar flows

-12-



has been discussed by Brown & Stewartson (1965) who argue that

similar solutions may be expected in two physical situations.

The first of these is at an x station where the velocity

profile is an initiator of the boundary-layer flow downstream;

such a situation occurs physically at the front stagnation

point of a bluff body or the leading edge of a flat plate, for

example. In these cases, the Falkner-Skan profile gives the

proper laminar boundary-layer solution at a point of attach-

ment of the mainstream and provides the initial condition to

initiate a boundary-layer calculation downstream. For tur-

bulent boundary layer., there appears to be no analogue of

this physical situation. In the absence of mainstream turbu-

lence, the flow at a point of attachment of the mainstream is

observed to be laminar and when the downstream boundary-layer

flow is turbulent, there is a transition zone in between the

laminar and the turbulent flow. Moreover, a wide variety of

upstream experimental conditions can lead to transition and an

eventual fully-developed turbulent boundary layer downstream

for the same mainstream velocity distribution. Consequently,

there would appear to be no reason to expect that the flow in

the outer region of an equilibrium boundary layer will be self-

similar at the initial stations of a fully developed turbulent

flow.
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For laminar boundary layers, the other case discussed by

Brown and Stewartson (1965) is that where a similarity solution

becomes what may be described as a terminator of a more general

boundary-layer flow and two cases of this behavior are con-

sidered by Brown and Stewartson (1965). A physical case where

this can occur is at a point of detachment of the inviscid flow;

examples of such behavior are known in magneto-hydrodynamic flow

(Leibovich, 1967a,b) and in rotating flows (Walker & Stewartson,

1972) at the rear stagnation point of symmetrical and two-

dimensional bluff bodies. Another case is flat plate flow and

here if the initial velocity profile at any arbitrary location

on the plate is not given by the Blasius solution, then the

Blasius profile can only become the relevant solution at an

infinite distance downstream. For turbulent boundary-layer

flows, an analogous type of situation is expected; that is,

similarity solutions are only anticipated as terminators and

usually at large distances downstream from wherever the boun-

dary layer is initiated.

In practice, one would expect to be able to measure tur-

bulent boundary-layer profiles, at large distances downstream

of the transition zone, which become arbitrarily close to

being self-similar; however, near the transition zone, there

is no reason to expect a self-similar behavior. In zero

and favorable pressure gradients, measured profiles in an

equilibrium flow shoul'd increasingly approach self-similarity
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at subsequent data stations downstream. In adverse pressure

gradient flows, there is an additional difficulty in that

reversed flow and boundary layer separation may occur before

similarity is achieved.

The self-similar flow is particularly attractive insofar

as turbulence model development is concerned because the para-

boiic partial differential equation governing the turbulent

boundary layer flow becomes an ordinary differential equation

of the boundary value type. In the present study, the ordinary

differential equation associated with the outer layer is solved

numerically for a given set of the turbulence model parameters

(K,K) to determine an outer layer velocity profile; this outer

layer profile is matched with an inner layer profile containing

the inner profile parameters (sK) and a composite velocity

profile for the entire boundary layer is defined. The com-

posite profile is then compared directly to measured experi-

mental velocity profile data and a rtot-mean-square error is

defined as a criterion of how well the profile represents the

data. The optimization procedure then adjusts one or more

of the three profile parameters (s,K,K) until a "best fit"

to each profile is obtained. Once this procedure has been

carried out for several data stations, the results are plotted

to determine any trends in the profile parameters; the
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objective here is to obtain correlations for the turbulence

model parameters for use in a prediction method. In the

present study, this procedure is carried out for two situations

and correlations are obtained for ic and K for the effects of j
pressure gradients and mainstream turbulence. Note that this

type of procedure is only applicable to measured profiles for

which the mainstream velocity is of the equilibrium type and

where the data is at locations far downstream of wherever the

turbulent boundary layer was initiated. The final correla-

tions for the effects of pressure gradients and mainstream tur-

bulence lead to excellent representations of the velocity pro-

file data. In principle, the models developed here may be

used in a prediction method for non-equilibrium flows.

The plan of this report is as follows. In §2, the basic

equations and principle results of the asymptotic theory are

summnarized. In §3 the optimization procedure is described

and in §4 and §5 the results of the method for pressure gradients

and mainstream turbulence effects respectively are given. A

description and test cases for the optimization code are given

in Appendices C and 0. Finally, the conclusions of the study

are discussed in §6.
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2. THE TURBULENT BOUNDARY LAYER TIME MEAN EQUATIONS

2.1 Basic Equations

The turbulent boundary layer equations governing two-

dimensional, incompressible time-mean flow are the mass continu-

ity equation and the Reynolds equation for streamwise momentum:

a + 2V =
x - (2.1)

y dU +e +-j (2.2)

In these equations, (x,y) represent Cartesian coordinates with

corresponding mean velocities (i, ). All lengths and velocity

components have been made dimensionless with respect to L and U0,

a reference length and velocity respectively. The Reynolds num-
UoL

ber is defined as - and is assumed to be large; here v is the

kinematic viscosity. The momentum equation (2.2) contains an

additive stress term a for turbulent flow which is related to

the usual turbulent shear stress by

a = (2.3)
0

In equation (2.3) the primed quantities are instantaneous velo-

city fluctuations about the corresponding mean values and the

over bar signifies a long time average. The boundary conditions
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associated with the equations (2.1) and (2.2) are

u(xO) = v(xO) = 0

(2.4)

u(xy) - U.(x) as y -

In addition to the above boundary conditions, the turbulent

shear stress term must be chosen to satisfy

a(x,0) = 0, a(xy) 4 0 as y . (2.5)

To completely specify the problem, an initial velocity profile

u(Oy) = f(y) for 0 < y < , (2.6)

must be given at some x-station in the fully turbulent region

of the flow which is denoted here by x-0. Note that the problem is

indeterminate until a model for the Reynolds shear stress term

is specified; however, it is possible through asymptotic analy-

sis of this problem to provide useful information about the

velocity components and shear stress without the introduction

of any specific functional form for the Reynolds stress term.

Before this is carried out, it is desirable to define an impor-

tant physical parameter, u*, that will play an important role

in the asymptotic analysis. The dimensional wall shear stress

is given by
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Tw L Y lycO (2.7)

and is used to define the dimensional skin friction velocity

u (2.8)

where Pw and Pw represent the dynamic viscosity and density at

the wall respectively. A dimensionless skin friction velocity

can be defined as

u = UoUT(x) (2.9)

Note that equation (2.7) can be rewritten in an equivalent form

as

u* 2u2 au y=0 (2.10)

The asymptotic structure of equation (2.2) in the limit of large

Reynolds number will now be considered.

2.2 Asymptotic Structure of the Time-Mean Equations

It is well known that the turbulent boundary layer is a

composite double layer consisting of a thin inner layer adjacent

to the wall and a relatively thick outer layer. A number of

authors, including Fendell (1972) and Mellor (1972), have
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considered the asymptotic structure of the time-mean momentum

equations for a constant property incompressible flow; in these

studies, asymptotic methods are used to isolate the leading terms

in an expansion for large Reynolds number for the flow quantities

in both the inner and outer region of the turbulent boundary

layer. These expansions are then matched in a manner which is

consistent mathematically and which is also consistent with

experimental measurements of the time-mean flow quantities for

both regions. Fendell (1972) also examines the conditions

necessary for self-similar flow in the outer region. The asymp-

totic results that follow summarize the work of Fendell (1972)

and are also discussed by Scharnhorst et al (1978).

In the outer region of the turbulent boundary layer, the

velocity profile may be written as a small perturbation about

the mainstream value as Re * -, according to,

= U.(x){l+u*(x;Re) 1 (x,n) + ...}, (2.11)

Here u* is the dimensionless skin friction velocity defined by

equation (2.9) and u*4O as Re-m-. In the outer region, the tur-

bulence term a may be written to leading order as

a = U.2(x){u* 2(x;Re)rl(n,x)+ ...1 . (2.12)

Here n is the scaled normal coordinate for the outer region
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defined by,

n = Y/Ao  . (2.13)

The dimensionless outer region length scale A0 is proportional

to the boundary layer thickness and is 0(u*); a convenient

choice for A is made in section 2.4; It is of interest to note

that the shear stress term given in (2.12) is equivalent to the

result that wv is O(u2 ) which, in general, is confirmed by

experimental measurement. When the velocity profile expansion

(2.11) and the turbulence term expansion (2.12) is substituted

into (2.2) and terms quadratic in the perturbation u* are neg-

lected, an equation for the velocity defect function u1 = BF1/an

is obtained according to

A aF 2F A 2l o 1 (21 o F1
an uaza, (uaUn2) -- - a (UinAo)'n + r ax

(2.14)

Here a prime denotes differentiation with respect to x.

This equation is subject to the boundary conditions

F1(x,n) -+ 0 as n - 0 , (2.15)

and

aF1
- (x,n) +0 as n + • (2.16)
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In the inner layer, sometimes referred to as the wall layer,

the velocity profile and turbulence stress term expansions may

be written to leading order according to

afl
U= *Uc(x) 3 (x,y + ) + .. , , (2.17)

and

= U.2(x)u*l(x,y+) + ... (2.18)

where
uL

y= -y = Re u* U(x)y , (2.19)

is the inner region variable. The matching of the leading order

terms in the asymptotic expansions (2.11) and (2.17) and (2.12)

and (2.18) occur in the limits ri+O and y+- for the inner and

outer layers respectively. A self consistent mathematical

structure which is compatible with experimental measurement may

be obtained if both velocity profiles merge smoothly with a

logarithmic profile behavior according to

- 1 log n + Co(x), as n - 0 , (2.20)

and

u+  l1 y
log y+ + Ci (x), as y+-=. (2.21)

Here i, C0 and Ci are in general functions of x. Although K
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is analogous to the von Karman "constant" which is normally

assumed to have a value of about 0.41, in general K could

depend on local flow conditions. It is worthwhile to note that

the conditions for the turbulence terms also follow from the

analysis (Fendell, 1972) and are

El I as n 0 , (2.22)

and

aI l as y+- (2.23)

First order matching of the inner and outer asymptotic

expansions leads to the velocity match condition given by,

1 =-- I log{A Re u*U.(x)} + C.-C o . (2.24)
U T g0 '1C

This skin friction relation connects u* and the outer region

length scale Ao . The match condition to leading order as Re

implies that

u* ~ (2.25)

and since A is O(u*) the turbulent boundary layer thickness

approaches zero as the inverse of a logarithm in the high

Reynolds number limit.

A composite velocity profile valid to leading order across

the entire boundary layer can be formulated. Van Dyke (1975)
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defines a composite expansion according to

[composite expansion] = [inner expansion]

+ [outer expansion] - [common terms]. (2.26)

The common terms represent the behavior of the inner and outer

expansions in the matching region. A composite streamwise

velocity profile is defined here according to,

u = u*U 1U+ + U - - log n + Co . (2.27)

Alternatively, an equivalent expression could be composed by

using equation (2.24) for the common terms in terms of the inner

region variable y+.

The question of determining good model profile approxima-

tions for the inner profile U+ and the outer profile U, will

now be considered.

2.3 Similarity in the Outer Region

The model profile that will be used for the outer region

flow is a self-similar profile and for this reason it is of

interest to examine the conditions necessary for self-similar

flow in the outer region. The terms self-similar and equilibrium

areoften usedinterchangeably in the literature but it is important to

makea distinction here. Thetermequilibriumis understood to apply
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to a turbulent boundary layer for which the mainstream velocity

behaves as U.(x) - x' or U,,(x) - eax where a and a are constants;

on the other hand, self similarity of the outer layer velocity

profile can only occur when the boundary layer is exposed to

the equilibrium outer velocity contributions for large stream-

wise distances. Consequently, equilibrium is a necessary but not

sufficient condition for the existence of self-similar profiles.

The necessary conditions for similarity follow from equa-

tion (2.17) for U1 and are that,

A

u 0 (U*U.2)' = -2a = constant (2,28)

and

l (Ao U.)' = a = constant. (2.29)

To assess the magnitude of the ratio u*'/u* which appears in

equation (2.28), the match condition, given by equation (2.24),

is differentiated with respect to x to obtain,

log{AoRe u*Uc(x)} +-I {Qo + A ' + _O _}+Ci Co

(2.30)

This equation can be simplified by using the match condition (2.24)

to eliminate the first term on the right hand side and this pro-

cedure yields
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U* I U 0 1 U0 0
U;* K o  

+  -6- + IC(CiCo )+K(Ci-Co)}

(2.31)

Since ic must approach a constant for a self-similar flow, the

order of magnitude of the ratio u*'/u* follows from equation

(2.31) and

u7' Q 0(u*). (2.32)

Terms containing this ratio may be neglected to leading order

in (2.28) and (2.29) which become

U'
q -8 (2.33)

and

U00 I

qI + q = a (2.34)

respectively where q = Ao/u*. These two equations are combined

to give

q= + 8 . (2.35)

As a result, there are only two types of mainstream velocity

distributions which can lead to self-similar solutions in the

outer layer and these are:

U0(x) = Dl(X-X o)  for a + 6 # 0 (2.36)

where
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!0

and- '~ q=-= (c+B)(X'Xo) (2.37)

and
- x

U.(x) = D2e 2  for a + a 0 (2.38)

where
Ao

2 ' q = = X (2.39)

Here D, D2, and x are all arbitrary constants.

Equilibrium flows have been examined experimentally for a

number of years and an equilibrium boundary layer has been

defined experimentally as a flow in which the dimensionless velo-

city defect (Ue- u*)/u expressed as a function of y16 becomes

close to being invariant with downstream distance. After careful

experimentation, Clauser (1954,1956) concluded that the criterion

for equilibrium was a constant value of the parameter ac which

is defined as
- 6* due

c Ue-d- . (2.40)

Here 6* represents the dimensionless displacement thickness

defines as

* f(1 U~)dy (2.41)

0

From the definition of 6* and equations (2.11) and (2.13) it
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follows that,

A = AoU*F ( x , - ) + ... (2.42)

As self-similarity conditions are approached, the x dependence

must vanish and Fl(x,-) must approach a constant value, say Fl(-).

Thus (2.40) becomes
Ao F1 (-) dU B (2.43)

u*U dx-

Note that a constant value of a implies a constant value of c

and therefore Clauser's (1954,1956) experimental results are

consistent with theory.

2.4 The Eddy Viscosity Model for the Outer Region

In order to obtain a solution of the outer layer equations,

a constitutive relation for 7 rT in the outer layer must be

specified and for the reasons discussed in section 1, a simple

eddy viscosity model will be used here. It is worthwhile to

note that although it is customarily assumed that some functional

relationship exists between -rv-r and the mean velocity profile,

no such relationship has been demonstrated either experimentally

or theoretically; consequently, the eddy viscosity hypothesis

should be regarded at present as a convenient approximation

which is expected to be supplanted in the future by constitutive
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models based on the observed coherent structure of the turbulent

boundary layer.

For the outer region, the Reynolds stress is defined as

U --T' - UoU2 C , (2.44)
-~ - 0 L ay o(2)

and from equations (2.12) and (2.13), the stress function E

becomes

1 = AoUoU(x)Lu* 1 (2.45)

where Eo depends upon both x and n. The functional form for Eo

is the same type as that used in the Cebeci-Smith (1969) and

Mellor and Herring (1969) prediction methods. In this model,

is selected to approach a constant value for fixed x near

the outer edge of the outer layer. Thus,

-o K U (x)S*L (2.46)

0 e

where 6* is the dimensionless displacement thickness and K is

an empirically determined constant. The value of K differs

slightly according to the model; Cebeci and Smith (1969) take

K = 0.0168 while Mellor and Herring (1968) use K = 0.016. In

the present study, a universal value for K is not assumed; rather

one objective is to determine if this parameter depends in any

way on the pressure gradient.
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Near the inner edge of the outer layer, the eddy viscosity

must behave linearly to satisfy the matching condition for z

given in equation (2,22); it is convenient to define a dimension-

less eddy viscosity function c(n) according to

0en) = 6UoU.(x)L (2.47)

whereupon equation (2.45) becomes

l u-A C(n) a . (2.48)
0

The function e(n) must assume the following limiting values:

U* 
0C 4 K n (w) as n -0 , (2.49)

and

s K as n (2.50)

A particularly convenient choice for the outer region

length scale Ao is

U*%=w(2.51l)

and it follows that FI(x,-)=-l fromequation (2.42). Detailed reasons

behind this choice for a are discussed by Scharnhorst et al.

(1978) and Scharnhorst (1978) and Weigand (1978). Equations

(2.45) and (2.49) may now be rewritten as
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S1 = e(n) (2.52)
and

C ) Cn as n • (2.53)

In general, the functional form of e(n) must be specified. The

model of Mellor and Gibson (1966) and Mellor and Herring (1969)

use a simple form of two straight lines defined by

5(n) = Em(n) = Ji K for n > ni , (2.54)
m tn for n < ni

where nI = K/K. An awkward feature of this model lies in the dis-

continuous derivative at n =n I which may be expected to give

rise to difficulties in a numerical solution of the outer layer

equation; this problem is handled by Cebeci and Smith (1974)

by using an artificial smoothing of the model in equation (2.54).

An alternative functional form for e(n) must reflect the linear

behavior near n=O in equation (2.53) and the limiting constant

value in equation (2.50) for large n; moreover, such a function

should be monotonically increasing with n. A rather complex

function meeting these requirements was assumed by Scharnhorst

et al. (1977) who, in addition, determined that it appeared to

be desireable for e(n) to approach the linear behavior Kn expo-

nentially quickly for small values of n. It also appeared
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important for e(n) to approach the upper bound K relatively

quickly for large n.

A particularly simple form of a function that satisfies

all the desired features of e(n) is

-C/nN I/N
Cn) = iCn{l-e 1 (2.55)

which is plotted in Figure 2.1 for integral values of N = 1, 2,

and 4. Here, the term C is given by

C () (2.56)

This monotonically increasing function (2.55) meets the require-

ments as n 0,

E(n) Kn, (2.57)

and as n

-n K{l + 0(- . (2.58)

Note that this function for N=4 is virtually identical

to the form used by Scharnhorst et al. (1977) but is a much

simpler form.

The outer region eddy viscosity function given by equation

(2.55) was used throughout this study with N=4.
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2.5 Outer Layer Similarity Model

With the outer layer stress function defined by equation

(2.52), it may be shown that the outer layer equation (2.14)

becomes

aUl  (UAo) aUl  Ao(U*U=2 ) ' Ao  Ul

an { a(n)n I + uru*oU Ul U - '

(2.59)

where U1 = aFI/Tn. For a self-similar flow, equation (2.59)

reduces to the ordinary differential equation

dUl 6*1 dU1
d n+ {-W- - c  n + 28c U1 =0, (2.60)

where ac is the Clauser pressure gradient parameter obtained

from equation (2.40) as ac = -6*UP/(u*
2 U.). Integration of

equation (2.60) across the boundary layer yields the relation

6*1
? = 1 + 38c  (2.61)

which can be substituted back into (2.6L, to obtain

d dUl dU0
{c(n) -1 + (l+2oc)n 1 + 2Bc U 0. (2.62)

To find the velocity profile in the outer region, equation

(2.62) must be solved subject to the boundary conditions,
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Ul log n + C as n 0, (2.63)

U1  0 as n (2.64)

Note that the constant Co is unknown. This problem was solved

by a combination of a series solution near n=O and a fully numer-

ical solution for n>O; the procedure is described in Appendix A.

Note that there are two parameters associated with equation

(2.62) and the boundary condition (2.63); these are the eddy

viscosity parameters K and the von Karman constant K which appears

in the eddy viscosity and in the boundary condition. In addi-

tion to the physical boundary layer quantities, the skin friction

u and the displacement thickness are contained in the parameter

ac which is defined in equation (2.40) and which appears in equa-

tion (2.62).

2.6 Wall Layer Model

The wall layer model used in this study incorporates what

are believed to be the important features of the time dependent

flow in the wall layer. A complete discussion of the ideas that

develop the unsteady wall layer model is given in Walker, Abbott

and Scharnhorst (1976), Walker and Abbott (1977), and Walker

and Scharnhorst (1977). This "unsteady wall layer model" has
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been extensively compared to experimental data by Scharnhorst

et al. (1977) who demonstrate that the model closely represents

measured velocity profile data in the wall layer even in flows

with pressure gradient; moreover, the representation is con-

siderably better than that obtained by a conventional Van Driest

(1956) type of model and, finally, the model is simpler to use.

For these reasons, this "unsteady wall layer model" was used

exclusively in the present study.

The profile given by Walker and Scharnhorst (1977) is

t +

U+ = [I + - -[R(S 2,to+)Q(H) + Z(H) + p(S2,to+)W(H)]

-t- [R(O,to+)Q(Ho) + Z(Ho ) + P(O,to+)W(Ho)], (2.65)

where

H = + H= -- , (2.66)

0
and

R(S2 ,to+) = Ci  { {- log 2} + 1 p+(S2+2to+)
0C Y 0

+ log (S2+to+) , (2.67)

Q(H) E (2H2+1) erf H + -He-H2  (2.68)

Z(_) -4- [(2H 2+l)E(H) + HE'(H)- ' (6H2+l)erf H - 1 e'H2 ],Z(/)

(2.69)
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P(S2 ,t) - p+(SZ+t+) (2.70)

W(H) - [I4+3H2+ ]erf H - H 5+ -H2

4 1e iH+ -e -3H2 .(2.71)

In the equations above, the E function is defined as
h x "

=(n) ex" f eY' f et dt dy dx. (2.72)

0 0 0

A detailed description of the = function and its properties is

given in Appendix B. For large y+ in the inner region, the

asymptotic form of the profile (2.65) is

U+ -I log y+ + C (2.73)
K I

Note that the model contains K and C i as parameters in addition

to to+ and S; these last two parameters are associated with

the physics of the wall layer time dependent flow and are dis-

cussed in detail by Walker and Scharnhorst (1977) and Scharnhorst

(1978). The mean velocity profile of (2.65) must satisfy

au=1 (2.74)
y*=o

and the wall compatibility condition

;3U+
= 0 , (2,75)

y+7o

-37-



which leads to the auxiliary relations

(S2+t +) ER(S2,to+ )- .1 + p(S2,to+)]
0 0 K 0

_ (t+) [R(O,t +)- I + P(O,to+)] = S (2.76)

and

(S2+t0+) [R(S2,to+)+ 3P(S2,to+)]

(t0
+) [R(O,t0 ) + 3P(O,t) = (2.77)

respectively. Note that equations (2.76) and (2.77) are two

relations for the four parameters K, Ci, S, and to
+ and conse-

quently only two of these parameters are independent. In the

data comparisons that are carried out here, K and S were gener-

ally assumed to be variables that were adjusted to obtain the

best fit to the data; thus, at any stage in the optimization

procedure for specified values of K and S, equations (2.76)

and (2.77) were solved for to+ and Ci.

2.7 Summary

A composite similarity velocity profile valid to leading
order for the entire boundary layer has been developed in this

section according to

u = u. U + U1 - log n + Col (2,78)
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Here U+ is the unsteady wall layer model given in section 2.6;

this model is an analytic expression given by equation (2.65)

which contains the independent parameters ic and S. The outer

region profile Ul1(r) must be obtained as a numerical solution of

differential equation (2.62) developed in section 2.5; this

numerical solution will implicitly contain the parameters iK

and K which appear in the eddy viscosity model. Thus, the com-

posite profile contains the three independent model parameters

S, K and K that may be adjusted in a computer optimization rou-

tine to obtain a best fit with experimental velocity profile data.
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3. THE OPTIMIZATION TECHNIQUE

3.1 Background

The present turbulence velocity profile model contains

three adjustable model parameters S, K, and K that affect the

basic shape of the analytical profile. This section addresses

the development of a systematic method to determine the optimum

values of the model parameters that minimize the difference

between the analytical model profile and experimental data.

The method described here can, in principle, be applied to any

test data to attempt to determine any trends in the data with

different physical effects; in particular, the procedure is

applied here to data for several pressure gradient flows and

mainstream turbulence levels.

Before examining the optimization method, a basis for

determining a best fit must be defined. For this study a root-

mean-square error c was selected according to

2 = N UDATA(Yn) - UANALYTICAL2

n=l Ue (3.1)

where

N = number of data points

UDATA = experimentally measured velocity at yn

UANALYTICAL = analytical velocity profile at Yn

Ue = freestream velocity
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The best analytical fit to a given experimental profile is

defined as that set of model parameter values which minimizes

c as defined by (3.1). Previous prediction techniques such

as those presented in Scharnhorst et al. (1977) and those used

in the Stanford Conference (Coles & Hirst, 1969) utilize the

standard error criterion of (3.1) as an objective basis of L

comparison. The particular optimization method used in this

study is presented in the next subsection.

3.2 The Optimization Method - Direct Search

A direct search minimization procedure was used to optimizej

the composite velocity profile. This technique is simple to use

since it only requires values of the objective function and not

gradients to carry out the optimization search. The nature of the

problem is such that gradients of the objective function cannot be

computed analytically and can only readily be evaluated by

numerical differentiation. Although the direct search pro-

cedure becomes very time consuming when the numiber of optimiza-

tion variables is large, it was used here with good success

since the maximum numiber of variables is three. The basic

procedure in the direct search minimization was to vary one

model parameter such that the least squares error objective

function would continuously decrease while holding the other
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parameters constant. Each model parameter is varied in turn

so that at any stage in the optimization procedure, a one-

dimensional search is made for the minimum in that direction.

The method used here is somewhat similar to the direct search

method of Hooke and Jeeves which is described in Himeblau (1972)

p. 142. The specific logic involved is as follows.

The optimization scheme starts with initial values for

the model parameters which must be provided to the subroutine

as well as a vector of initial incremental step sizes for the

parameters. This initial location is established as a base

point. To initiate a search, the objective function fo(x) is

evaluated at this base point and one parameter x1 is then incre-

mented by the specified step size Ax1 . Suppose first that the

objective function decreases. The parameter x, is incremented

continually according to x,(i+l) = x1 (i) + Ax1 and the objec-

tive function f(i+l) = f(x (i+l)) is computed. This process

continues for i = 0, 1, 2, 3, ... as long as f(') continually

decreases. Eventually, at a certain step, say step k, the

objective function will increase and f(k+l) > f(k). At this

stage, a local minimum in the x1 direction has been bracketed

in the range x (k-1) < x (k) < x (k+l). To further refine

the location of this minimum, a quadratic interpolation poly-

nomial, f = Ax 2 + BxI + C is used, where A, B, and C are
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determined by solving the set of equations:

f(') = Ax (i)2 + Bx I(i) + C (3.2)

where

i = k-1, k, and k+l

This interpolation polynomial produces a local minimum in the

direction at x1* = -B/2A. In certain cases,this inter-

polation scheme may produce a value of xl* which is not close

to the midpoint of the interval xl (k) or an objective function

which f(*) is not close to f(k). When this situation occurs,
* (k-1) (k) (k+l)then three of the values x 1  xI  , xI , and x1l

which have the lowest objective function are relabeled as
x(i-i), x(i), and xI(i+l) and another quadratic interpolation

polynomial is fit through these values to obtain a new minimum

* The interpolation scheme is repeated until a specified

convergence criteria is met between the values of X* and

x1(k) or f(x) and f(k). After convergence in the x, parameter,

the new value of x1 is retained as the base point; the next

parameter x2 is incremented by the specified step size ax2 ,

and the search procedure repeats until all the independent

parameters have been changed.

In the second place suppose that an increase in the objec-

tive function is realized for the initial step of a model

-43-



parameter (for example, x) from its base point. When this situa-

tion occurs, the search direction is immnediately changed to the

negative direction and the program procedure continues as pre-

viously stated. In the event that the objective function increases

for the first step in the negative direction as well, the program

enters into the quadratic interpolating routine since the local

minimum has been bracketed in the range x1-Ax1  .xl .x 1 + Ax1.

After the local minimum has been refined, a one-dimensional

search is carried out for the next variable.

After a one-dimensional search for each variable has been

carried out by the above procedure, a new base point is estab-

lished and a convergence test is performed in which the optimiza-

tion function values for the last two base points are compared.

If these two values differ by an amount less than a specified

criterion, a minimum has been found and the program terminates.

If the convergence criterion is not met, the step sizes Axi

of the search are reduced ten percent and the search procedure

start's anew from the current base point.

The direct search program contains two types of error

flags. The first type of error flag is encountered when the

number of combined step and interpolation iterations reaches

a specified maximum value. This error flag then terminates

the optimization routine and returns to the prediction code
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with the latest values for the optimized parameters. The

second type of error flag occurs in the quadratic interpolation

scheme when the value of the A coefficient of the quadratic

polynomial is identically zero. This flag prevents a compu-

tation error in the interpolation process and terminates the

direct search program. One variable returned by the subroutine

is the error variable rER; values IER- 1 and IER = 2 indicate

errors of the first and second type respectively. A value

IER = 0 indicates a successful search has been completed.
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4. TURBULENT BOUNDARY LAYER PROFILE REPRESENTATION

4,1 Introduction

In order to obtain a velocity profile representation for a

given set of velocity profile data, one or more of the composite

profile parameters S, K, and K can be altere, in several combina-

tions. Each such combination defines a different method of pro-

file representation; if a parameter is not optimized, it must be

assigned a universal value. In the study of Scharnhorst (1978),

one method considered was to take K=0.41 (the generally accepted

universal value for the von Karman constant) and S=10.4965; this

value of S is the value which with K=O.41 produces a value of

Ci = 5.1 in equations (2.76) and (2.77); again Ci = 5.1 is a

generally accepted value. Scharnhorst (1978) then carried out a

one parameter optimization on K over a wide range of pressure

gradient data; the results of this optimization were not encourag-

ing. The principal difficulty was that the analytical profile

tended to skew through the data in the logarithmic zone. This

difficulty was noted by Scharnhorst (1978) and is illustrated in

Figure 4.1; in this figure the results of a one parameter opti-

mization on K (with K=0.41, S=10.4965) are illustrated for three

stations of the data of Anersen et al (1972). These stations

are labeled 8109, 8209, and 8309 and are the last measured data

stations in equilibrium flows for zero, moderate and strong
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FIGURE 4.1 Velocity profile comparisons for one parameter
optimization on K (with i=0.41, S=10.4965) for
three data stations of Andersen et al. (1972).
Profiles are for a zero, mild adverse and strong
adverse pressure gradient flow; note procedure
is less satisfactory with increasing pressure
gradient.
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* I adverse pressure gradient flows respectively, It may be observed

from Figure 4.1 that the theoretical profile represents the con-

stant pressure profile well in the overlap zone but is increasingly

less satisfactory there as the pressure gradient becomes larger.

It may be observed from Figure 4.1 that for stations 8209 and

8309, a larger value Of K appears to be indicated in order to

decrease the slope of the profile to conform to the data.

However, there are two main difficulties associate6 with

the fitting problem and it is worthwhile to discuss these here

before proceding further. The first problem has been termed a

"low Reynolds" number effect by Scharnhorst (1978) and is asso-

ciated with a failure of the composite analytical profile to

adequately delineate various regions of the boundary layer. To

understand this last statement, consider profile 8309 in Figure

4.1; the solid straight line is apparently tangent to the curve

in the overlap zone of the profile. The inverse of the slope

of this straight line may be obtained graphically and is indicated

on the figure as K=0 .2 6 6; however, the value Of K used to obtain

the profile in the figure was K=0.41. The reason for this diffi-

culty may be clearly observed in Figure 4.2 which illustrates

composite similarity profiles for two values of the Reynolds

number based upon the displacement thickness, 6* for fixed values

of ac =0, K =0.016, and K = 0.41. In preparing this figure,
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a value of Re S* 10 was chosen since it is typical of practical

flows that occur in engineering practice. For Re6* = 103 the

range of y+ that exhibits logarithmic behavior is apparently

relatively short and the slope of the analytical profile in this

region appears to be greater than the value 11K. The reason for

this behavior is associated with the value of Re6 * which relates

the inner variable y+ to the outer variable n by y+ = Res*n,

For Red* = 103, a value of y+ = 100 would correspond to an outer

variable value of n=0.1; for this reason, the apparent range of

logarithmic behavior in Figure 4.2 for Re,* = 103 is relatively

short and significant portions of the inner and outer regions

blend together in the overlap zone. To show the effect on the

profile as the Reynolds numb~er becomes larger, a composite simi-

larity profile is also presented in Figure 4.2 for a value of

Re6* arbitrarily increased to 104, It may be observed that a

logarithmic region emerges over a wider y+ range and that the

composite similarity profile corresponds on the graph more

closely with the input log-law behavior.

A second difficulty associated with the fitting of the

composite profile is encountered with moderate to strong pressure

gradient flows where s c is 0(l). It may be observed in the

series solution for the outer profile given in equation (A.4)
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that for all a 0 0, the series contains terms of the form aini

c1

log n in addition to the purely logarithmic term (l/K)logn; two

points about these terms are germane. In the first place, it

may easily be verified that such terms arise in the series because

of the pressure gradient term in the outer layer equation and

are not associated with the choice of turbulence model per se.

Secondly, although ni logn -* 0 as n - 0 for all i > 0, such terms

do give a significant contribution for n j 0 and the purely

logarithmic behavior of (I/K)log n will only be realized for

very small n. As previously indicated, for low ReS*,very small

values of n will correspond to moderate (but not large) values

of y+ and the logarithmic portion of the analytical profile

becomes obscure. As 8c increases the difficulty becomes more

severe since it may easily be verified from equation (A.4)

that the a, become increasingly larger as Bc increases. This

effect further causes the composite profile to deviate from

logarithmic behavior for small n.

The failure of the composite profile to reflect the true

input logarithmic behavior for low Reynolds number on a graph

is of some concern since the values of Re6* which are character-

istic of many experiments are 0(lO3) or 0(104). To attempt to

overcome these problems, Scharnhorst (1978) suggested two

approaches. In the first of these, a full three parameter
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optimization of S, K, and K was carried out. Generally this

procedure produces very good representations of the data;

however, as Scharnhorst (1978) points out, the parameters (S,K,K)

tend to lose physical significance in such method in two ways.

Frst the input value of K used to produce the profile is

not the apparent value that would be calculated from a graph of

the profile; this point has been illustrated in Figure 4.1.

Secondly, Scharnhorst (1978), upon plotting the values of S

obtained for profiles with various values of ac , observed a

trend for S to remain approximately constant or to actually

slightly decrease with increasing Bc . This trend is opposite

to the experiments (Kline, et al. 1967) which suggest that S

should increase with increasing ac.

The second approach was suggested by Scharnhorst (1978)

as one possible way of overcoming the problems of the three para-

meter optimization and was attempted here. The main ideas are

that the parameter K primarily influences the quality of the

fit in the outer region while the parameter S mainly influences

the inner region; on the other hand, K influences the slope of

the profile in the overlap zone and consequently has an important
effect in both regions. The difficulties associated with the

strong influence of varying K and also with fitting this type of

profile have been discussed by Scharnhorst (1978) and Weigand
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(1978); one approach found to be acceptable for heat transfer

profiles (Wiegand, 1978) is to perform a one parameter optimiza-

tion on K holding c fixed; once the optimization had been com-

plete, a new value of K is obtained from a graph of the data in

inner region coordinates; note that in the optimization uT will

vary and hence the graph of u+ versus y+ will change. This graph-

ical iteration process starts with a value K=0. 41 and continually

obtains new values of K from the slope of the data points in the

logarithmic region of the velocity profile. This approach is

denoted by method 1 in this study and the least square curve fit

error results of the first iteration are presented in Table 4.1,

First iteration curve fits for the last data station of the zero

and favorable pressure gradients of Andersen, et al. (1972) are

shown in Figure 4.1. Unfortunately method 1 failed for successive

graphical iterations since the new values of K from the slope of

the logarithmic region do not provide improved curve fits; in

fact, the values of K taken from the data give a lower value of

K than 0.41 although a larger value of K is suggested upon com-

parison of the data and the analytic profile. The lines drawn

tangent to the data in the logarithmic zone are depicted in figure

4.1 as broken lines. The failure of this procedure is again due

to the low Reynolds number effect for large ac, In the next sec-

tion, several other methods are discussed in an effort to obtain

improved composite profile data comparisons.
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4.2 Composite Profile Data Comparisons

Composite similarity profile representations were obtained

using several methods in which certain model parameters were

optimized using the direct search technique while holding others

constant. The five methods considered in this study for profile

representations are:

1. Method 1 - one parameter optimization on K while hold-
ing S = 10.4965 and Kc = 0.41 constant;

2. Method 2 - two parameter optimization on K and K while
holding S = 10.4965 constant;

3. Method 3 - two parameter optimization on S and K while
holding =0.41 constant;

4. Method 4 - three parameter optimization on S, sc, and
K;

5. Method 5 - two parameter optimization on S and K while
holding K = 0,46.

To determine which method offers the best profile representations,

each method was run with the non-transpired zero, mild, and strong

adverse pressure gradient data of Andersen, et al. (-1972)(labeled

8100, 8200, and 8300, respectively) and the favorable pressure

gradient data of Herring and Norbury (labeled 2700 after Coles

& Hirst, 1969). These data sets were chosen for several reasons.

First, in all data sets there is a relatively large number of

points in the inner layer and this is important in assessing the

performance of the unsteady wall layer model. In the second
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place, these data sets reflect a wide variety of pressure

gradients for equilibrium mainstream velocity distributions.

Thirdly, these data sets are relatively recent and are believed

to be very reliable. The 'least squares error E: is presented

in Table 4.1 for each of the five optimization methods. The

values of -e in parentheses represent recalculated values which

neglect the third and fourth data stations for the Herring &

Norbury (Coles & Hirst, 1969) 2700 flow and the first two data

stations for the Andersen, et al. (1972) 8100, 8200, and 8300

flows. These neglected data stations generally correspond to

upstream stations which are suspected of not being representative

of equilibrium behavior. The recalculated e- values are observed

to have a value close to that for the average c representing all

data stations except for the 2700 series in which a substantial

improvement is noted.

By observing the curve fit error for the mild adverse

pressure gradient (8200 series) in Table 4.1, it is apparent

that substantial improvements in the quality of the fits can

be realized by varying more than one parameter. The best curve

fits are obtained with methods 2 and 4 in the sense that the

lowest least squares errors are obtained with these methods. A

similar trend may be observed for the strong adverse pressure

gradient (8300 series). Note that the RMS error increases in
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the range 50-70% for methods 1, 3 and 5 in going from the mild

to the strong adverse pressure gradient case; for methods 2 and

4, the percentage increase is 19 and 14 percent respectively.

The 8300 series is the most difficult case for profile represen-

tation because of the low Reynolds number effects and pressure

gradient effects which have increasing importance for larger

Bas discussed in §4.1. 'On the basis of the results in

Tables 4.1, methods 1, 3, and 5 may be ruled out as effective

parameter adjusting methods.

To further assess which of the surviving methods offers

the best profile representation, the complete profile optimiza-

tion results for methods 2 and 4 are given in Tables 4.2 through

4.9 along with the corresponding profile representations in

Figures 4.3 through 4,10. Evidently, the S, K, and K optimiza-

tion technique of method 4 has the lowest average root-mean-

square error, c; however, this result is not totally unexpected i
since the adjustment of all three parameters offers more flexi-

bility in curve fitting for both the inner and outer regions.

Method 2 (Kc, K optimization with constant S = 10.4965) offers a

close second choice in the selection of a profile representation

method which suggests that the variation of the S value does

not drastically change the quality of the curve fits. j

An important observati on whi ch can be made from the results

of the three-parameter fits of method 4 is that the composite
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Figure 4.4 Velocity profile comparisons for two parameter

optimization on K and K (with S - 10.4965) for
constant pressure data of Andersen, et al. (1972).
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Figure 4.5 Velocity profile comparisons for two parameter
optimization on K and K (with S -10.4965) for
mild adverse pressure gradient of Andersen et al.
(1972).
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Figure 4.6 Velocity profile comparisons for two parameter
optimization on K and K (with S = 10.4965) for
strong adverse pressure gradient of Andersen
et al. (1972).
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Figure 4.7 Velocity profile comparisons for three parameter
optimization on S, K and K for favorable pressure
gradient data of Herring and Norbury (1969).
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Figure 4.8 Velocity profile comparisons for three parameter
optimization on S, K and K for constant pressure
data of Andersen et al. (1972).
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Figure 4.9 Velocity profile comparisons for three parameter
optimization on S, K and K for mild adverse
pressure gradient data of Andersen et al. (1972).
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similarity profile encounters difficulty in fitting velocity pro-

files measured in strong adverse pressure gradient flows. An

increase in e with pressure gradient can be observed in Table

4.1; this is not entirely unexpected for two reasons. First,

true self-similar behavior is not anticipated in situations with

large adverse pressure gradients since boundary layer separation

may occur before similarity is achieved; consequently, it may

be that the model is not an appropriate one for large adverse

pressure gradients. In the second place, there is a significant

departure of the composite profile from logarithmic behavior in

the overlap region for sc 0(0) due to the low Reynolds number

effect and the a c effect in the series solution as discussed

in section 4.1. The effects of increasing s c in the series

solution may be offset by increasing ec, thereby reducing the

magnitude of the a1 and bi coefficients in equation (A.4) (see

Appendix A). This cancelation effect may be observed in the

results of the three-parameter fits in Tables 4.6 to 4.9 which

reveal that the optimized values Of K increase with sc* As

a result, it may be concluded that the three paramieter optimiza-

tion process adjusts the parameters of the composite similarity

profile to correct an undesirable low Reynolds number effect

or large a c effect in the series solution. However, the optimized

value of K is no longer associated with the apparent inverse
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slope in the logarithmic portion of the profile as taken from

a graph of the profi le.

To summarize the investigation of all the optimization

methods, it was found that a significant reduction in error of

the profile fits is realized by optimizing all three parameters

of the profile, namely S, Kc, and K. However, the three para-

meter optimization masks any physical interpretation originally

associated with the parameters to counteract the low Reynolds

number and large a c effects. Thus, the parameters S. K, and K

became simply profile parameters which are adjusted to obtain

a close representation of measured data. The objective now is

to obtain correlations for these parameters based upon the four

equilibrium flows of 2700, 8100, 8200, and 8300 in order to

provide the basis for a prediction scheme.

4.3 Parameter Correlations

In order to develop a profile prediction method, optimized

parameter values were obtained for the three parameter optimiza-

tion of method 4 and the two parameter optimization of method 2.

Both optimization methods used the negative pressure gradient

flow of Herring arnd Norbury labeled 2700 and the three Andersen,

et al. (1912) flows, 8100, 8200, and 8300 which cover a range

of Oc from about -0.4 to 1.5. The results of the optimized
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data fits for the three parameter optimization of method 4 were

then plotted versus the pressure gradient a as shown in Figure

4.11. The first two data stations of flows 8100, 8200, and 8300,

and the third and fourth data stations of flow 2700 were not

included in the correlations because of the observed form of the

experimental velocity profiles which did not appear to exhibit

self-similar behavior; this is reflected in the fact that the

results for these eight data stations showed a substantial devia-

tion from the straight line correlations in figure 4.11, Prospec-

tive correlations which could be used in a prediction procedure

were obtained by fitting a least squares straight line and quadra-

tic curve through the optimized parameter values represented by

the solid symbols. The resulting correlations for the three para-

meter optimization of method 4 are given in Table 4.10. The

RMS curve fit error for the correlations show that the quadratic

curve fits give only a very slight improvement over the linear

curve fits. The three parameter optimization correlations indi-

cate that K is nearly constant; most of the variation occurs in

c which in effect offsets the influence of Oc in the series

solution for the outer layer mode. A slight variation occurs

in the S correlation which is contradictory to the experimentally

observed trend for the dimensionless time period between bursts.

The correlation indicates that S increases slightly with pressure

gradient while the visual observations of Kline, et al. (1967)

-76-

.1



0 2700 U 8100 A 8200 *8300
15

S 10

11 .0254+.7412a

5L

0.025

0.020

K0A

0.015 A
0.01591-.00036s c

0.010

1.0

0.8 *4479+.1701oc

K 0.6

0.4

0.2 A a
-0.4 0 0.4 0.8 1.2 1 .6 2.0

SC

FIGURE 4-11 Parameter correlations obtained fronm three-parameter
fits of the emiposite similarity profile to four sets
of data.

-77-



NN

00 N 9

Nl 0D LOl

ko CD coCD

U + + u

ca r-- "O O%. CA qc a C) m
to fq CDIr m co 0V CV) 5

0b 9 cn CD )(

+ + + + +

+l +DP
CJr Un~

'.0 .~. 04
'.0 ~ 0 1O
CD C)9

0t 9-k 0ys
V) a

isIIii.II

CD Go
(I, ( L

CD. CD~ U
0D CD qL

w- + a-r ON 0
00 %0 o44

= 0. D r t l r-. 0D a
U!' U! - 0 5%. D M C

V)9 *D 9- 4DIn1

~~~r + . + r-5:S ~
4 v 0.bo'

z 5%.0 i-'o UU)

.

C

-78--



show that S decreases with increasing pressure gradient. This

contradiction is explained by recalling that the three

parameter optimization tends to mask any physical significance

that may originally have been attributed to the model parameters.

Another point which concerns the value of S is worthy of men-

tion; in the wall-layer the data exhibits a rapid profile vari-

ation which may give rise to an unnatural weight in the least-

squares error calculation. In addition, wall-layer data paints

also have been shown to exhibit velocity measurements which are

dependent upon the pitot probe tip geometry (Andersen, Kays

& Moffat, 1972). All of these factors contribute to the conclu-

sion that the slight trend in S with pressure gradient obtained

with the three parameter optimizations may not be significant.

The correlation for K indicates that there is a substantial

influence of pressure gradient on the value of K; this is partly

due to the influence of a c in the series solution which is offset

in the optimization by increasing the K value for larger ac.

Because of this effect and the Reynolds number effect discussed

previously, the values for K obtained from the correlations

presented in Table 4.10 cannot be directly associated with the

inverse slope of the logarithmic region on a graph for profiles

with displacement thickness Reynolds numbers 0(10 3). The curve

fit data for the K correlation of the three parameter optimization
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exhibits the least scatter (lowest RMS error) of the S, K,

and K correlations which tend to strengthen its reliability for

use in a profile prediction scheme.

As a point of interest, correlations based on the two para-

meter optimiizations are also included in Table 4,10. It may

be observed that these correlations show the same trends as the

results based on the three parameter optimizations of method 4.

Note that the dependence of K on ac is weak while the dependence

Of K on sc is strong; for method 2 the RMS is larger than for

the results based on method 4. Since a lower RMS is also observed

in the actual profile fits using method 4, this procedure is con-

sidered somewhat superior to method 2 and the correlations in

Table 4.10 based on method 4 are recommnended.
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5. MAINSTREAM TURBULENCE

5.1 Introduction

The influence of mainstream turbulence on a fully developed

turbulent boundary layer flow with zero pressure gradient has

been studied by a number of investigators. The experimental

investigations of kline et al. (1960), Kestin (1966), Huffmian

et al. (1972), Charnay et al. (1971) and others, indicate that

mainstream turbulence affects the turbulent boundary layer velo-

city profile in many ways. In particular, a thickening of the

boundary layer with increasing mainstream turbulence level is

observed along with a progressive increase in skin friction.

A general change in the shape of the non-dimensionalized mean

velocity profile has also been documented in which there is a

marked reduction in the "wake" component of the outer layer as

the mainstream turbulence level increases. Finally, in a ther-

mal boundary layer, the heat transfer at the wall increases

progressively with increasing mainstream turbulence. To con-

sider the possibility of including the effects of mainstream

turbulence level into a boundary layer prediction method, it

is appropriate to first examine the turbulent boundary layer

momientum equation.

The continuity and momentum equations governing nominally

steady turbulent boundary layers have been given in equations

(2.1) and (2.2) in connection with the conventional type of
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turbulent boundary layer; these equations still apply when the

mainstream is turbulent. Moreover, the boundary conditions in

equations (2.7) and (2.8) for the mean profile are still correct.

The single turbulence input to the equations is the Reynolds

stress term jj'7'; unfortunately it is not possible to incorpor-

ate the fact that mainstream turbulence is present in the Rey-

nolds stress other than through a correlation. To understand the

reason for this, consider the turbulence kinetic energy

defined as,

42 = =U (5.1)W

where 'u, v' and =w are the turbulence intensities. For a

laminar mainstream flow 7 approaches zero at the boundary

layer edge but for mainstream turbulence

q e as y(5.2)

The mainstream turbulence level Tu is defined by

T (5.3)
u u ez(x)

where Ue is the local mean mainstream velocity. For simplicity,

assume that the mainstream turbulence is isotropic, viz.

=w (5.4)

consequently)
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=w Tu 9 as y- . (5.5)

However, 7rv~ r 0at the boundary layer edge just as for the

normal type boundary layer.

It should be remarked that the momentum equation (2.2) does

not contain the intensities 'u, =v since these terms are of

lower order; even if these terms were retained in equation (2.2),

the dilemmna is still not resolved since the intensities appear

as the difference (iiPZ77i which still must vanish at the boun-

dary layer edge for isotropic mainstream turbulence.

Since it is not possibl,. to incorporate the fact that main-

stream turbulence is present in the boundary conditions for

either the mean profile or the turbulence terms, the other pos-

sibility of developing a correlation for the eddy viscosity

model parameters is investigated here. In particular, the eddy

viscosity formuila in equation (2.55) contains the parameters K

and ic and here possible trends for these parameters with T u will

be considered. In addition, a possible trend in the inner

region profile parameter S will be investigated. Again, this

is carried out by a systematic adjustment of these parameters

to obtain a best fit to data in an equilibriumn flow but now

with various levels of mainstream turbulence. The ultimate

objective here is to provide correlations for these parameters

which could be used in a prediction method.
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The data used for composite profile representations was

obtained from the United Technologies Research Center boundary

layer wind tunnel (Blair and Werle, 1980). Several turbulent

boundary layer mean velocity profile data sets were available

for zero pressure gradient flows with mainstream turbulence

intensities ranging from 0.2% to 6.4%. These data sets haveA

a large ntznber of points that provide a good data base for

profile fits and represent the best available test data at this

time which reflects the effect of mainstream turbulence.

5.2 Composite Profile Data Comparisons

Composite similarity profile representations were obtainedj

for two methods in which one or two model parameters were

optimized using the direct search technique while holding others

constant. The first profile optimization method used to repre-

sent turbulent boundary layer velocity profile data with main-

stream turbulence was a one parameter optimization in K with

constant values S = 11.025 and K = 0.44789. These constant S

and Kc values correspond to the values taken from the three

parameter optimization correlations in 04.3 for zero pressure

gradient. Results of this method are presented in Tables 5.1

through 5.3 along with the corresponding profile representations

in Figures 5.1 through 5.3; note that the 18 data stations used
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FIGURE 5.1 Velocity profile comparisons for one parameter
optimization on K (with S-11.025 and K-0.44789)
for mainstream turbulence flow.
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in these profile comparisons have been taken from the study of

Blair & Werle (1980)and have been arranged here as a 1000 series

in increasing order corresponding to increasing levels of local

mainstream turbulence. Consequently the data in this sequence

represents a mixture of data stations from the four basic runs

with different mainstream turbulence generators which were

carried out by Blair & Werle (1980). By observing the least

squares error e tabulated in Tables 5.1 through 5.3 and the

velocity profile representations presented in Figures 5.1

through 5.3, it is apparent that the quality of curve fits are

acceptable and that the profile model can be used to demonstrate

the effects of mainstream turbulence on turbulent velocity pro-

files with good success, The optimization results indicate that

there is a trend in which the value of the K parameter increases

with increasing turbulence level Tu. This trend was anticipated

in the sense that it was known that increasingly larger main-

stream turbulence levels result in a progressively thicker boun-

dary layer; mathematically larger values of K in the eddy vis-

cosity formula give rise to a thicker boundary layer,

A second profile optimization method was considered in

an attempt to obtain improved velocity profile fits, This

method was initiated to investigate possible changes in both

r the inner and outer layers of the velocity profile and utilized
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a two parameter optimization on S and K with a constant value

of K 0.44789; again this value Of Kc corresponds to the value

taken from the three parameter optimization in 04.3. The

results of this two parameter optimization are presented in

Tables 5.4 through 5.6 along with the corresponding profile

representations in Figures 5.4 through 5.6.

An observation which can be made concerning the results

of the two parameter optimization is that the least squares

error is generally smaller than for the one parameter optimiza-

tion; but that the improvement in the quality of the curve fits

is not dramatic. The reason for this behavior may be explained

by close examination of the nature of the curve fits near the

wall; in this region there is a greater curve fit error for the

one parameter K optimization than for the error associated with

the two parameter S and K optimization, The remaining sections

of the model velocity profiles for the one and two parameter

optimizations are similar and exhibit almost the same curve fit

error. In the two parameter fit the value of S adjusts to

minimize this error for the data points nearest the wall.

Unfortunately these data points are usually the most uncertain;

it is also important to note that the S parameter values

obtained from the two parameter optimization exhibit a great

deal of scatter and any attempt to derive a trend from this

-92.
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information was considered to be potentially misleading, Finally,

the magnitude of the S parameter for the low turbulence inten-

sity cases did not match the value of S = 11.025 which was

obtained from the S correlation of §4.3. All of the above

observations suggest that the one parameter K optimization

with constant values S = 11.025 and K = 0.44789 provides the

most realistic method for developing velocity profile predic-

tions. The objective now is to obtain a correlation for the

K parameter based upon the results of this section,

5.3 Parameter Correlations

In order to develop a profile prediction method optimized

parameter values were obtained from the one parameter optimiza-

tion of K with constant values of S = 11.025 and K = 0.44789.

This optimization method examined eighteen zero pressure gradient

data sets with mainstream turbulence levels which cover a range

of Tu from 0.002 to 0.0640, The results of the optimized data

fits for the K parameter were then plotted versus the turbu-

lence level Tu as shown in Figure 5.7. Prospective correla-

tions which could be used in a prediction procedure were

obtained by fitting a least squares straight line and quadratic

curve through the optimized parameter values represented by the

symbols. The resulting correlations for the one parameter
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optimization on K are

K = 0.01489 + 0.39285 Tu (.0008519) (5.10)

and

K = 0.01567 + 0.30941 Tu + 1.35909 Tu2 (.0008462) (5.11)

for the linear and quadratic fits respectively. Both correla-

tions represent iacreasing functions of mainstream turbulence

intensity as expected and discussed in section 5.1. The RMS

curve fit errors for the correlations are given in parenthesis

following the equations. These RMS values indicate that the

quadratic curve fit gives only a very slight improvement over

the linear fit; however, one feature of the quadratic correla-

tion is that the value of its intercept is close to the value

0.01591 obtained from the three parameter correlation of 64.3

for turbulent boundary layers affected by pressure gradient.

This indicates that the prediction methods for pressure gradient

effects outlined in §4 and the method for mainstream turbulence

are compatible. This compatibility adds to the credibility of

the correlations for use in profile prediction. To obtain a

correlation that incorporates the zero pressure gradient inter-

cept value of K = 0.01591 from §4,3, the quadratic curve fit of

equation (5.11) was rerun with the intercept held at 0.01591.

The resulting correlation for the one parameter optimization
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on K was

K = 0.01591 + ,292727Tu + 1.58500Tu2  (.0008465) (5.12)

where the RMS curve fit error is given in parenthesis. The

correlation of equation (5.12) is recommnended for prediction

purposes to insure complete compatibility.
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6. SUMM4ARY AND CONCLUSIONS

In the present study, a profile model for the mean velocity

*in a nominally steady two-dimensional turbulent boundary layer

has been developed. To obtain this profile, the leading terms

in an asymptotic expansion for high Reynolds number for the mean

* velocity were derived for both the inner and outer layers of the

turbulent boundary layer. A self-similar behavior in the velo-

city was assumed. In the outer layer, a simple eddy viscosity

formula was assumed containing two parameters ic and K; the outer

layer self-similar profile satisfies an ordinary differential

equation which was solved numerically. For the inner layer, an

analytical profile model which is based on the observed coherent

structure of the time-dependent flow in the wall layer was used;

this model contains the parameters Kc and S. A composite profile

which spans the entire boundary layer was defined and this pro-

file is in general a function of the three parameters (K, K, S).

A computer code was developed for whi'ch any or all of the three

profile parameters may be varied to obtain a best fit to a

given set of experimentally measured profile data; this code

is described in Appendix C, A test case for the code is pre-

sented in Appendix 0.

There are two potential uses for this optimization procedure.

In the first of these, a very close representation of a given
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set of velocity data may be obtained by carrying out a three

parameter optimization using the code described in Appendix C

even in situations where the flow does not exhibit self similar

behavior. The second use is rather more significant and is

associated with the development of the basic model for a

boundary-layer prediction method. By carrying out a series of

optimization studies for given sets of data, it is demonstrated

in §4 and §5 that trends in the optimized values of (S,K,K) may

be observed; from cnese trends correlations for the model para-

meters for a physical Rffect may be obtained. In the present

report, two such .tdies have been carried out and correlations

have been developed for the effects of both pressure gradients

and mainst-eam Virbulence.
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APPENDIX A

OUTER LAYER SIMILARITY SOLUTION

A.l INTRODUCTION

In this section, the outer layer similarity equation

d{(n)-Ul- + (1+2c)n- + 2scU , (A.1)
dn dri C dri cl 0

is solved to obtain the outer layer velocity profile. Because

of the irregular logarithmic behavior near n=O, two types of

solution methods ,e used and these consist of a series solu-

tion for small in and a numerical solution for large n. The

matching point where the series and numerical solutions are

required to merge smoothly is taken to be rim = K/2K,

A,2 SERIES SOLUTION FOR SMALL n

The eddy viscosity function e(n) was selected such that

e(n) approaches a linear variation Kn exponentially quickly as

n approaches zero. Consequently for small n, the outer layer

similarity equation (AMl) becomes

d2U1  dU1
Kn - + +(l+2dW -L-+ 2 c U1 =0 (A.2)

For equation (A.2), a series solution of the form
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= ir (A.3)U1  n E- an n (A3
i=0

is assumed and the indicial equation yields a double root a=0.

The solution thus takes the form of a regular power series

plus a logarithmic term of the form,

U1 = bn  E an n} logrn, (A.4)

n=0 n=O

with derivatives

dUl 1 n-I ann-1 0 nn-1d - h bn n + { n an }log n + zan

d n1 n=l n=O

(A.5)

and

d2 UT z2 n(n-l)b nn-2 f z* n(n-l)a nn 2 1g n
dn n=2 n=2

n -2 a 0 C n-2
+ n a- + E a (n-l)n . (A.6)

n1l n n=2 n

As ri-O, the required behavior for U1 is given by equvton

(2.63) and is

U1 - log n + C (A.7)
0

therefore
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I1

ao  and bo = C (A.8)

Recursion relations for an and bn are obtained by substitution

of Ul and its derivatives from equations (A.4), (A.5), and (A.6)

into equation (A.2). It may easily be shown that

-{2sc+n(l+2ac )la (A.9)
an+ 1 - (n+l) z (

and

b~~ - anEl-(a+n12 Mn+l = c(n+l)Z { - [1 - +c

+ (2Bc + n(l+2ec))bn }  . (A.1O)

A.3 NUMERICAL SOLUTION OF OUTER REGION FOR LARGE n

A numerical solution to the outer layer similarity equation

(A.l) is calculated in the range nm < n < no where nm is the

matching point to the series solution and n represents the

* outer bound of the numerical mesh which is chosen large enough

* to ensure no significant change in the solution. In order to obtain an

accurate numerical solution, a small mesh size is needed near

the wall whereas far from the wall, the solution decays

* rapidly and a larger mesh may be used. For this reason, a

numerical method developed by Kellor (1969) which permits a

-11
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non-uniform mesh was used in this study; the details of this

method will be described here.

The ordinary differential equation to be solved is of

the form

+ P(n) dn + q(n)U = 0 , (A.ll)

where

P(n) = t {u. + (l+2Bo)W , (A.12)

2 8 cq(n) = r• (A.13)

Equation (A.ll) is reduced to two first order differen-

tial equations by the introduction of an auxiliary variable v

defined as

Vu v (A.14)

which transforms (A.ll) to

d -p(n)V - q(n)u (A.15)

A non-uniform mesh is defined by

nj =nj 1 + hi 1  (A.16)
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where hi- l is the variable mesh length. Equations (A.14)

and (A.15) are approximated at the midpoint of nj and nj+ l

using a central difference for the first derivative and aver-

age values for u and v. As a result, equations (A.14) and

(A. 15) become,

u -u j

h = - (Vj+l + vj) , (A.17)

and

vj+ l -v j = ~ (Vj++Vj qj+j w++j (.8h-v 2 -(v (W+vl+Wj) (A. 18)

h 22(w~+ + 2

where

Pj+ = P(nj ) and qj+ = q(nj + ) •

The auxiliary variable vj+ l is eliminated using equation (A.17)

to obtain
2

-2v. + hjj (u+-U) = -pj+(U U
Ji -j jlJ ~

" 2 (uj+l+u (A.19)

A similar procedure is used to approximate (A.14) and (A.15)

at the midpoint of nj l and nj. Eliminating the variable vj. I

in a similar fashion reveals
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2v 2 - L (u-uj 1 ) =-

h .-lq - (u + uj ) ( (A.20)

By adding (A.19) and (A.20) to eliminate vi, it may be shown

that the finite difference equations reduce to the general

form

bj uj+ l + ajuj + cjuj_ l  dj , (A.21)

where

aj= -l-y- (Pj+-Pj_) + (qJ+ + - qJ-) ,

j 2 j+ 1 + q ,

=,

dh h0,

h.
Y= l- "i

This general form can be used to generate a system of N-i

finite difference equations for a mesh with j=l,2,3,...,N

number of grid points. The system of equations forms a

tri-diagonal matrix which can be solved in a direct and

efficient manner by using the Thomas algorithm; this
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algorithm defines two functions 6j and Fj in which the system

(A.21) may be solved as

u= F u + 6, (A.22)

where

F1 = 0, F. -b

j aj+CjFj-l '
.... (A.23)

d .-C, .& _
61 = U19 aj = a+C jF j-1

for j=l,2,3,...,N-l. After the arrays F. and 6. are calculated,

the solution u i is obtained from (A.22) by back substitution

from j=N-l to j=l.

A.4 SOLUTION PROCEDURE

The procedure used in this study to obtain a smooth match

between the series and numerical solutions at the match point

nm is outlined below. Let the solution to equation (A.l) be

represented by

Ius 9 0O< n<n m

u = ju
tun u n m<_n < no

where us and un denote the series and numerical solutions

respectively. First, an arbitrary value for the constant Co
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in equation (A.7) is guessed, say C o(l). From this value,

a series solution may now be calculated for 0 < n < nm, say

us (1). In particular, the series solution is used at the

match point to obtain Us(l)(nm) and its derivative dus(1)(%)/dn.

Using us(l)(nm), the numerical solution for <n .n I n is

calculated, say un( l)(n); the derivative dul( 1 )(rm)/dn is cal-

culated numerically using a six point forward difference for-

mula (Abramowitz & Stegum 1972, p. 914). It is worthwhile

to note that at this step the resulting solution will not have

a continuous derivative at n=nm. A second arbitrary value

for C is guessed, say Co(2) from which us(2) and un(2) are

calculated using a similar procedure as that stated above.

Again, the resulting solution will not have a continuous

derivative at n=nm .

The final solution with a continuous first derivative at

n=nm is a linear combination of the solutions previously found.

Thus,

U (I) + B2U ) for 0 < n<n , (A.24)

and

un BlUn() + B2un(2 ) for rm in .no , (A.25)

where 81 and B2 are constants. One condition imposed on B1
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I

and B2 is

B1 + B2 = 1 , (A.26)

in order that u satisfies

u I og n + C as n* 0

A second condition relating B1 and B2 is that the first

derivatives of equations (A.24) and (A.25) must be equal at

the match point according to

dU(1) dun (1) du s(2) du n(2)

I{d - dn + 2 - dn --0.
n= n--nm

(A.27)

Equations (A.26) and (A.27) can be solved to yield the values

of B1 and B2 . The true value of CO is thus

Co = B C (1) + B2Co(2) (A.28)

In this manner, a solution to equation (A.1) is obtained con-

sisting of a series solution for n < nm and a numerical solu-

tion for n > nm; this solution and its first derivative are

continuous at the matching point n=nm . Since equation (A.1)

is a second order equation all derivatives are therefore con-

tinuous at
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APPENDIX B

THE E FUNCTION

The E function is defined as

=n e x2 fXeY2 Jetdt dy dx , (B.I)

0 0 0

which satisfies the differential equation

r/W+ 2n -- erf (n) • (B.2)

The following expansion is readily obtained

) -n 2  2Ja(j)n2j+l
- 7-- l (2j+l). (B.3)

where

a(j) = a(j-l) + a(l) = 1 , (B.4)

which is uniformly convergent for all n. An asymptotic expan-

sion used to evaluate -(n) as n is

=- E 19n+YO l ({2j-l)'.' } (B.5)

{log + - l j2Jn(J

where Yo is Euler's constant equal to 0.57721566...
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APPENDIX C

THE OPTIMIZATION CODE



PROGRAM MAIN (INPUT, OUTPUTvTAPE5=INDUT* T APE6=OU TPUT I
CO"NON/VAR/IVAR3l ,Xf'f31
EXTERNAL F

C
C v 6 * THIS IS THE MAIN PROGRAM WHICH IITIATES THE DATA FITTING

.C * * BY CALLING SUBROUTINE PROFIT.
C
C * * * NPAR - NUMBER OF PARAMETERS DESIRED FOR THE PROFILE FIT.
C v * * REFERENCEs AN OPTIMIZATION TECHNIQUE FOR THE DEVELOPMFNT
C ' OF A TWO-DIMENSIONAL TURBULENT BOUNDARY LAYER
C.9
C •MODEL, YUHAS, L.J. MASTER'S THESIS
C 9 LEHIGH UNIVERSITY
C
C 0 ' 0 ITERN - MAXIMUM NUMBER OF CYCLES TO BE PERFORMED IN ORSRCH
C (NORMALLY 50)
C 0 * * IPRINT=1 IF PRINTING OF INTERMEDIATE RESULTS IN ORSRCH IS
C DESIRED DURING THE COURSE OF THE OPTIMIZATION.
C =0 IF NO PRINTING IN DRSRCR IS DESIRED.
C ' ' 

• EPS - THE EXIT TOLERANCE IN ORSRCH IF,SAYEPSXI.E-5 THE
C ITERATION WILL CONTINUE IN ORSRCH UNTIL THE PARAMETERS
C BEING OPTIMIZED HAVE CONVERGED TO 5 SIGNIFICANT
C FIGURES
C
C THE PARAMETERS CAPK,SKAPPA TO BE OPTIMIZED ARE INITIALIZED
C IN THE INPUT
C IVARtI)z 0 NOT OPTIMIZED
C a i OPTIMIZED
C WHERE I i 1 CAPK
C =2S
C =3 KAPPA
C

REAOIS,10) (IVAR() ,=1,31
NPAR=O
O0 30 1=1,3

30 NPAR-NPAR*IVAR tI)
REAO(5,201) "TERNIPRINTEPSNA
CALL PROFIT(NPARITERM, IPRINTEPS,'4A)

£0 FORMAT(312)
20 FORMATC2I4,EG.9,14)

STOP
END
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SUBROUTINE PROFIT(NPAXITERMIPRINrEPSNA)
DIMENSION ITITLE(51,jLUNTTI.),XF(31
DIMENSION LSYS4ZIIOENIISI.X415),uE(15),uTAU(I),DUEOX(I1)PPLUS(l

4-5) DELT A I 191,OaSTR15)v THETA.19,SH APE tL) EPSICL),OCELT LS)
DIMENSION PPLUSE(III,UTAUE(ISIESII51,TOPLUSII5UCII)EYE(151
DIMENSION CF(L1)CFE(15),pCIlIS),CAPKLI5),XKAP(151,STLIS),TUTL11S
DIMENSION FS(3),DXI3).OXERRI3),DXF(3),OXERFI3).XN(15)
CCMMON/DATA*#NPARioNOWX1JUI,9DUIDX9YD:90IO (90 19OLSTR*UAt901,p
*YDPL(1000t ,UAPLIIIOO) ,NPPT
COMHON/VAR/IYAR13) ,XO13)
COMM"ON/UOUT/NOETA(4.00),DETAtE.6I),U11i03),ETAMETAI.COUT.CIN,

IS, TNOTPOELINUELOU1,USTARSB3ETAC
EXTERNAL F
DATA LUNIT/2HFT92H N,92HIN92HCM/eLSYSf7HENGLXSH,7H 1ETRIC/,EBAR/I./
DATA HGHT/0.1/
DATA NPPT/'.00/
NOwNA

C
C - - SUBROUTINE PROFIT READS IN THE EXPERIMENTAL DATA AND
C 0 * 0 INITIATES THE OPTIMIZATION AT EACH DATA STATION BY
C 6 6 CALLING SUBROUTINE DRSRCH
C
C ' 0 6 INPUT IDENTIFICATION FOR DATA RUN
C ID - A FOUR DIGIT NUMBER CUSER SUPPLIED) TO IDENTIFY DATA
C IUMIT - ZERO FOR ENGLISH UNITSONE FOR METRIC UNITS
C ITITLE- TITLE OF DATA SET 150 CHARACTERS MAXIMUIN)
C

REAO(5.100)10.IUNIT, (ITITLEI) ,,)
IUPl=IUNIT+I
IUP3=IUNrT.3
CON V=12*
rF(IUNIT.EQ.11CONVft10.

NPARwNPAX

C XNU -KINEMATIC VISCOSITY
C * 0 * NSTA -NUMBER OF DATA STATIONS
C

REAO(591lZ) NSTA
C
C INPUT PARAMETERS FOR PLOTTING
C
C * * * NCYC - NO. OF X CYCLES
C * '* N PLTPP - NO. OF ZERO PLOT TICKS ON Y AXIS
C 4 v XLC - LENGTH OF EACH CYCLE ONEX 49IS
C * 0 4 INCPL - INCREMENT LABELS ON Y AXIS
C 0 0 * NL - NO- OF NON-ZERO TICKS ON Y-AXIS
C 0 0 * XL - LENGTH BETWEEN TICKS ON V-AXIS
C

READ(5,99) NCYCqNPLTPPtXLCoXLqNLIICPL
90 FORHATtZI49ZFLO.2921.)

DO 10 N-INSTA

ID. 10*1I

WRITE6,103) tITlTLEtIlvIu1,5),IO

C : *: X -LOCAL VALUE OF X-LOCATION ON THE WALL
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C 6 ' 0 UTAUE - ESTIMATE OR EXPERIMENTALLY QUOTED VALUE OF UTAU
C * 0 DELTA - EXPERIMENTAL VALUE OF BOUNDARY LAYER THICKNESS
C * w 0 DELSYR- EXPERIMENTAL VALUE OF DISPLACEMENT THICKNESS
C * w THETA - EXPER1IMENTAL VALUE OF MOMENTUM THICKNESS
C 6 * D UEOX - LOCAL VALUE OF THE MAINSTREAM VELOCITY GRADIENT
C

READ t5. 01) XNU
XN(N)=XNU
REAOL,l84)XIN),UE IN) UTAUEINI #DELTA IN) tDELSTR IN) 9THETAIN) qOUEDXAN
09 BETE(N)
READ?5.130) TUTCN)

C
C 6 CFE - EXPERIMENTAL VALUE OF THE SKIN FRICTION COEFFICIENT
C * SHAPE-SHAPE FACTOR
C

CFECNV=Z.*'UTAUECN)lUEtNII"*2
SHAPE (N)ODELSTRINI/THETA tHI

C
C '* IF AN ESTIMATE OF UTAU IS NOT AVAILABLETHE VALUES OF
C w UTAU ARE TO BE READ IN AS ZERO AND AN ESTIMATE FOR
C 6 UTAu Is COMPUTE USING THE LUDWErG-TILLMAN CORRELATION.
C * NOTE THAT THIS IS ONLY USED AS A STARTING ESTIMATE
C 0 FOR UTAU IN THE OPTIMIZATION PROCEDURE.
C

IFfASS(UTAUE(t4)).GT.1.E-16lGO TO 15
CFE(N)=0.24*6'(IENUTHETAIN/4XNU':ONV)"(6-0.258I1S.'**(-.676'SHI

*PE(NJ I
UTAUE9N)=UEtNl*SQRT(0 .5wCFE(Nl)

15 CONTINUE
C
C 6 * * PPLUSE-EXPERINENTAL VALUE OF THE INNER REGION PRESSURE
C * GRADIENT PARAMETER
C

PPLUSE (N)-XNJ'UE( N)'DUEDX (Ni/ (UTAUE (Nl "3)
WRITEL6,105)X (N),LUNIT(IUPI) ,UE(NILUNIT(IUP1)
WRITE:6,1LOG)DUEOXtN),UTAUEtN),LUNITtIUP1),.DELTAIN1,LUNITIUP3)OEI

*STR(Nli.LUNIT(IUP3$i THETA (NI ,LUNIT(IUP3I
C
C * 6 T O - Y LOCATIONS OF THE EXPERIMENTAL DATA POINTS
C * 4 U0 - EXPERIMENTALLY MEASURED MEAN4 VELOCITY AT YO
C
C SET UP AXIS FOR PILOTTING

C FNG*PTPIG O2
IFLN.GT.NPLPP GO TO 25

CALL PLOTtXLCONCYC.2.,2.O.-3)
CALL LOGAX (NCYC, XLCoHGHT)
CALL SHFTYAX (NL.NPLTPP,XLINCPLHGHT)
GO TO 2?

26 IFIN.GT.NPLTPP.1) GO TO 25
CALL PLOT(XLC'ONCYC,2.,-XL'(NPLTPP-1i,-3)
CALL LOGAX (NCYC. XLC. HGHT'
CALL SMFTYAXINLNSTA-NPLTPPXLIM:PLHGHTI
GO TO 2?

25 CALL PLOTIO.OXLe-31
27 CONTINUE

READ5,1021 NDP



REA(59991 XO(1I,XO(ZIXG(3)
99 FORMAT(3F10.8)

REAO:5,1071 tYO[I) ,I=±.NOP)
REAO(5.L071 (UO(I) .11,jNOP)
WRITE(6,1081 NOPLUNIT(Iup3)
WRITE(69t09) CYO(I),UO(I I, 11,N0PW
00 2o I1,NOP

ZO YO(I)=YD(I)/CONV
DELTA (NI =OELTA (NI/CONy
DLSTR=OELSTR (NI/CONY

UI=UE (N) 1
OUIOX=DUEOX LNI

C INITIALIZE STEP SIZES FOR ORSRCI4
C

DX 1 ) =0 .5
OX :33 =8. 0
OXERRtI=O.00001
DXERR (2) C0001
OX ERR (3) =0.0 001

C

C IN ORDERED FORM FOR OPTIMIZATION IN DRSRC4.

C
JC= 0

00 30 1-1,3

XF(JCI=XU(II

OXF:JCI=OX CI ) i
30 CONTINUE

C
C INITIATE OPTIMIZATION IN ORSWCN

1 PIT ECALL DRSRCHINPAR,3,FFFFS.XFOXFDOKERFITERN,9EPSITER9

C

JC=l
Do 4o 1=1,3
IF(IVARfI).EQ*0)G0 TO 40
Xa :I)=XF(JCI
OX £I)=DXFlJC)
DXERR (I I OXERF (JC)
.JCZJC .1

40 CONTINUE
EPSII N)=SQRT (FF1
EBAR=EBARtrPsI(N
DELTA IN) =OELTAIN)*COMV
ES (N=X £2)
CAENsX (11IIx0 2
XKAP(N=XO (3)
UTAU4N)zUSTAR9UE,.N)
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CFtN I =2.*gUTAU IN) /UE (N)1 **2
CI(NI =CINF (EStN) TOPLUS NI ,XO Z3) ,., L1
ST (N)BSETAC
WRITE(6,110)i ITER.EPsI(N,NlPAR
WRITE1691111 IX0(JlJ=1v31 ,UTAUIN)
WRITEZ69uIiZcI :NlmTOPLUS ZN)
WkITE(6,113) BlETAC

C NA TCH CONDITION CRITERIA FOR INNER AND OUTER REGION VELOCITY PROFILES

W R ITE 16 11.1
WRITE(6.11t5) ETAMsN09ETAO

C INNER AND OUTER LENGTH SCALES
WRITE16,ZOO)
WRITEL6. 201) OELIN.OELOUT
WRITE, 116)

0O 50 Iz1.NOPq
YPzYO I1) /OEL IN *
UAPUA(I )/USTAR
UOP"UAP=UDP-UAP

50 WRITE (6,117) YP*UD(I)UOP,UAI)UAP,UOPUAP
C
C SET UP FOR PLOTTING
C COMPUTE ENOUGH PLOT POINTS FOR A SMOOTH CURVE
C FOR ETA LESS THAN ETA"
C

NNPTSZJ.O 0
ETPL=ETAM-1. '0ELIN/oELOST
DELP=ETPL/ FLOAT CNNPTS)
YOPL (13 1.000*OELIN
00 55 IulNNPTS
IFII.EQ.J.) GO TO 5'.
YOPL I)-YOPL (I-I) DELP*DELOUT

54. YOL=YOPL (I$/DELIN
ETAD=YODPLm )/OELOUT
CALL UISER(XKAP(N) ,BETACCOUTETAOUIUL0,EPS)
WAKE=UI-ALOG (ETA 0)/XKAP( N)-COUT
UAPL(I)=USTAR*(UP(Y0L,TNOTPCNXCAP(N3,0.) #WAKEI

55 CONTINUE
00 56 IziNNPTS
Y9PLU)C-2FLOAT(NCYC)XLC)ALOG1.0SFLOAT(NCYC))'(ALOG(YDPLtl)/IEL

UAPLLI)=XLNL'IAPL (I)/INL*INCPL'USTARI
C56 CONTINUE 1

C FOR ETA GREATER THAN ETA MATCH, USE THE NUMERICAL
C SOLUTION ALREADY CALCULATED

NUAzNNPTS+NO
NEX=NNPTS+L
00 59 I2NEXNUA
YOPLI)lETA(I-NNPTSl*OELOUT
YOL=YOPL ()/DELIN
ETADsETA CI-NNPTS)
WAKEsU(I-NNPTS)-ALOG (ETAD) /EIAP (N)-COUT
UAPL 11 lUSTAR* UPYLS TNOTPCIN9 KAP NJ 0.1 WAKCE)
YDPLI 1) a(FLOAT (NCYCI *XLC) IALOG (10. *FLOAT ?NCYC) I * 9 ALOCtYOPL tIl FU1EL

L IND)
UAPtl()XL'NL*UAPL(I)/4(NL'INCPL*FUSTARI
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59 CONTINUE
CALL PLOT(YOPLIIJUAPL~i),3)
00 60 I:2,NOP
CALL SYM9OLI(FLOAT(NCYCI 'XLC)/AL0G:10.'*FLOATP.tCYC)3'rALOG:YOCIIO

IELIN)3,PXL'NL'U0(I),(NL.!NCPL'USTAR,;.0?T,0.,-1,
60 CONTINUE

CALL PLOT(C.,0.93)
XLIM=IFLOAT(NCYCeOXLCI/ALOG(10...rLOAT(NCYC)3.ALOGtYNP,OELIN)

00 65 1=lNUA
NUALzI
IF(YDPL(I).GT.XLZI GO TO 66

65 CALL PLOflYDPLCI)qUAPLCI1,21
66 CONTINUE

XIO=YOPL (NUAL) -Z.%NGHT
YID=UAPL (NUAL) -HNT/2.
CALL NUM1BERCXIDPYINGTIOENN,.,2HIa

10 CONTINUE
E9AR=EBARIFLOAT( NSTAS
WRITE6,11ia (ITXTLE(IJ,I=1,51,*LSYS(IUP1I
00 70 IuINSTA

T0 WRITE 6v,119)!OEN(I IX(3UE( I iUTAUE(ri xN()vSETE( ) 9DELTA I I)
*OELSTR1I)9TIETA(I) ,TUT4I)
WRITE(6,1Z0J NPAR
00 60 11,vNSTA

#TOPLUS(I1,CI(I1
WRITEI691221 NSTA9E3AR

L00 FOR"AT'.2I4,5AL0)
101 FORMATIEIO.31
102 FORMAT(141
103 FORMAT(1H1,5X,5A10,* - $914)
104 FORMAT:7FLO.0,FL0.21

105 FORMAT(/q5Xv$X = $F6.3,1lX9A294Xq*UE= *,Fr21XA2v/SEC~f
1n6 FORMAT1/vl4X9$EXPERIMENTAL VALUES#,v14X*DUED)( *PF7.39* L#/SEC*,0

1. 14X,*UTAU= *,F7.3 L,IXA2,*/SEC*,/. 14XFtOELTAu #9FT.491XA2,f,14X,$
2DELTA*- $#F7.4,1X9A2t,/,14X,*THETA2 *,F7.49iXA2) -

107 FORWATtSFIGO0
LOS0 FORPIAT(/*SX9*EXPERI4ENTAL VELOCITY PROFILE*,/,19XvI2,* POINTS**I,1

14X9*Y t$,A29*)*,6Xv$U/LES1
L09 FORMAT(L3XF7.4,5XvF6.41

*110 FOR"AT1//,5X#$AFTER $9124e ITERAT10'IS IN DR3RCH, F(X)m *vE13.69* b
c1714 A*,I292X,$PARAPETER FIT*)

1it FORMATISX,*CAPK *.vEl3.6,2Xp$S =*9E13.6.2X,*KAPPA =*9E13.s.2X9*UTA
CU =$tE13.69/1

112 FORMAT(5X9*CIN* *9E13.6.SXvSTOPLUSz 09E13.6)
113 FOR"AT(/*Sx,*SETAC m SEL3.61
114 FORMAT(//o5X,*I4ATCH CONDITION CRITERIA FOR VELOCITY PROFILE*1
115 FORMATt5Xv#ETAM 0*vF7.4,1.X9*NO z *9t4,4X9$ETAO a *IF7.a.,1
116 FORMAT 11141,13X, 66H-' EXPERIMENTL PROFILE * ANALYTICAL PROFILE

1 6 U+ DEVIATION *9/914X, IH*,241, 1H*92ZX, LH*916X* M,,
2X, ZI4Y*,4K, 114',5K SHUO/UE97K, 3HUO*94K, 114',5K, 51UA/UE951
39 314UA.,4X. LMH,3K 914U0. - UA.,4k, IN')

117 FORMAT £5X9F7.292X9 1M'3KF7.4,4XF7%293X, 1M*93X9FTe4vZKF7.2v
13X, IH',3X9F9.&,4K, 1IN*)

118 FORMATI1MIt/////II/Z3XA10,,,a.1X,*q*,A7,* UHTTSI*,p
+//q//*39K,*EXPERIMEgTAL VALUESS,~,1IK,**,*6X,8KSTA,5K,*tJE*,5)
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9 *UTAU*,8X 9*NU*96X v*8ETA*6X9*EL*v 4W *DELTA **3X9*THETA*,5Xq
**TU*l

119 FOR4ATI 1UX#149 3XF 6. 3,2X ,FG.2, 3XFb 49 3XqF8 -lip3XF6.39442X,9F7.41 I
M2 FORMAT(//,5Xm*UNSTEA0V WALL # SIMILARITY MODEL F FULL P~tF

*ILE$,14,2X,*PARAMETER FIT*,*/.1Xt 2H!D,5X, '40HETASX, '.*UTAI.
+6Xv INSSXv 1H1CSX9 5HKAPPA,2X9 7HEPSILON,4X9 3HT0~vSX,
*.2WCI1

121 FORM4AT tK1,4,1X.F8.4,ZX.FG.3,2XF7.3.ZXFS.6,3XF7.4,2I1XFS.G1,
13X,F6.31

122 FORMATrI,2OX, *MEAN EPSILON OVERSIb,2X9 *STATIONS =*gF$.bl
130 FOR"AT:F10.a)
200 FOR"ArU//,SK,*LENGTH SCALES*)
201 FORMAT(SX*OELIN u *,F7.594X,*OfL3UT =*oFT.51

RETURN
END
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SUBROUTINE ORSRCM (NNOIMFF4,FS,.ODX.EPS1,.MAXEPSIF.ITERIPRINT, -

I XE R)
EXTERNAL F.*
DI1MENSI ON FS INOI M) , X NOI 141 OX CNOINI 9 EPSI ND IN$

C
C ORSRCH - DIRECT SEARCH ROUTINE
C
C VARIABLES
C N - NUMBER OF PARAMETERS
C NOIN - DIMENSION OF ARRAYS
C F - FUNCTION NAME
C F'. - FINAL VALUE OF F
c FS - VECTOR OF INTERINEOXATE F VALUES
C X - VECTOR OF INITIAL AND F14AL PARAMETER VALUES
C OX - VECTOR OF INITIAL STEP SIZES
C EIPSI - VECTOR OF CONVERGENCE 'RITEREON
C MAX - MAXIMUM NUMBER OF ITERTIONS
C EPSIF - FINAL CONVERGENCE CRITETEAN
C ITER - NUMBER OF ITERATIONS
C IPRINT - PRINT CONTROL
C IER - ERROR FLAG
C

rE RNO
ITERE IER
IF (IPRINT.EQ.11 WRITE (691261
FI4uF X)

101 1=0
102 1=I*1

* I NSTEP=O
X3-X(I)
F3zF'
IF IIPRINT.EQ.13 WRITE 16,121) IT-RqF!91(J)9OX(Jl9Ju1,N)

*103 ITER=ITER,1
IF CITER.GT.MAX) GO TO 116
NSTEPNSTEP1l
X22X3
F2=F3 .

X 13= Xt13G0XtK 1
X3ux (I)
F32FIXI
IF (IPPIN4T.EQ.11 WRITE (6,1213 ITEtqFlv.:X:.OXCJ)Jo1,Nl
IF (F3-F2) 10'4910'.,10

10 4 Xl=X2 -

FlwF2
GO TO 103

L05 IF tNSTEP-11 1069106,107
106 XIzX3

FlzF3
OX(13=-OX(13

X3=X2

F3*FZ
GO TO 193

L07 ITER=ITER*i
IF (rTER.GT.MAX) GO TO 118
X22uX2*X2
X32nX3*X 3
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F2MF3=F2-F3
AFAC=Fli*X2-X33-Xl'F21qF3.F2eX3-F3'g2
IF tAFAC.EQ.0.) GO TO 119
8FACmXI'*Xl'F214F3-Fi* (X22-X32) +X22*F3-X32'F2
X4=-BFAC/ £2. 'AFACI

F4=F CXI

IF (IPVINT.EQ.l1) WRITE (691223 ITERvFt~v (X(J)9OX(JI,9JO1,N)
IF (A8S(2.*OF/fF4*F2)).L.T.EPsrFl ;0 TO 11'.
IF IAS(ELX).LT.EpsrIII GO TO 114
IF IDXIII.LT.O.) DELX--DELX
IF (OF) 10av0l~i

108 IF (DELI 109,109,110
109 13.12

F2=F4
GO TO 107

110 X1.12
FI=F2

X2-F'.

GO TO 107
tit. IF (DELI 11291129113
112 11.1'.

GO TO 107
113 X3=1'.

GO TO 107
114. IF (N.EQ.11 RETURN

IF (l-I) 102v1029115
115 IF (I-N) 102,116,116

00 117 Jul.14
117 OX:IJI=0CtJ311.1

GO TO 101
118 IERaI

wRITE(612.3 MAX
RETURN

119 IERz2
WRITE 1691231 XIF1,X2vF2.13oF3
RETURN

C
120 FORMAT t(14131. 1CYCLE9SX9 114V,13XV a4Xtl99xv SHOXII)s
121 FORMAT £ 514 E 9I393I,E13.6,61Z2EE3.61
122 FORMAT I 4 51 9 ,3,3XpE13e6v642XEE3.6f3
123 FORMAT C51, '4X1 DEL3*6,p 614 FLU YE13obip 6"4 12w 9E13e69 6"

1F2m 413.6,p 64 X3* ipft3o.G 614 F30 vE13.51
C12'. FOR"ATISX9002SRC FAILED TO CONVERSE I% *,I'.,*tTERATIONSsI

ENO
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FUNCTION FX)

DIMENSION X(3)
COMON/VAR/IVAR(3) ,XO 3
COMNON/DATA/NPARNOPXNUUIDUIOXV23( 93,UD(901OLSTR9UA( 90) 9

,YOPL 1000)q UAPL(LOO8) ,NPPT
COMMON/UOUT/N0, ETA (I4001 DETA(4001 (1#00) ETAMv ETA0 9COUTvCtNe
IS, TNOTPDELIN OELOUTUSTARBETAC
DATA EPS/1.E-IO/

C FUNCTION F COMPUTES THE ROOT-NEAN-S2UARE ERROR
C BETWEEN THE MEASURED EXPERIMENTAL VEL3CITY PROFILE DATA
C AND THE THEORETICAL VELOCITY PROFILE. THE THEORETICAL
C PROFILE CONSISTS OF THE UNSTEADY WALL LAYER MODEL
C FOR THE INNER LAYER AND A SELF-SIMILAR PROFILE MODEL
C FOR THE OUTER REGION,
C
C ARRANGE VARIABLES INCON1G FRO" DSRC ZN CORRECT ORDER

C
JCxL
DO 10 I1,3
IF(IVARI).EQO.0)GO TO 10
X(I)=X (JC)
JCxJC+L

10 CONTINUE

C CALL UTAUF TO DETERMINE UTAU
C

XKAPxXO 33
S=XO (2)
CAPK=XG0(1
CALL UTAUF(CAPKXKAP)

C COMPUTE RMS ERROR

C
JLOC-2
F=O.
UAI)u0 .000

O 20 1=2NOP
YDP=YD LI/OELIN
ETAD=YD(I)/DELOUT

C
C COMPUTE THE DEFECT PROFILE AT THE DAra POINT EITHER
C FROM THE SERIES SOLUTION FOR ETAD LESS THAN ETAM

C OR BY INTERPOLATION OF THE NUMERICAL SOLUTION FOR
C ETA GREATER THAN ETAN
C

IF(ETAD.GT.ETAIGO TO 30
CALL UISERIXKAPB8ETACCDUTETAOUIviJ1D.EPSI
HAKEwUI
GO TO 40

30 DO 50 J-JLOC9NO
Xt=ETA tJl-ETAO
X 2ETA(J-1)-ETAO
X3sXl9X2
IFIX3.LT*.0)GO TO 6O

50 CONTINUE
WAKEzO.
GO TO 40
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60 JLOC=J
WAIE=UOJJ- U Jt-UUJ-131X1/DETAIJ-1)

4.0 WAKE=WAKE-ALOG(ETAD) $XKAP-COU1
UAIII=USTAR44UP(YOPSTNOTPCNX(APU.*)WACE)
F'T=UD4 11-USTAR (UP (YOPmS9TNOTPvCI4,KKAP90.) +WAKE)

20 FFFT*FT
F=FIPLOAT fNDP)

70 CONTINUE
RETURN
END
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FUNCTION EDYVISI XKAPCAPKETAS
DATA NXN/4,O. 25 4

C FUNCTION EDYVIS EVALUATES THE EDDY VISCOSITY FUNCTION
C OR ITS DERIVATIVE FOR THE OUTER LAYER OF A TURBULENT
C BOUNOARY LAYER. THE FUNCTION APPROACHES KAPPA*ETA
C FOR SMALL ETA, EXPONENTIALLY QUICKLY. FOR LARGE ETA
C THE EDDY VISCOSITY FUNCTION APPROAC4ES THE OUTER CONSTANT
C K ALGEDRAICLY
C
C INPUT PARAMETERS XKAP - VON KARMAN *CONSTANTS
C CAPK - OUTER REGION *eCONSTANT* K

C ETA - SCALED OUTER REGION COORDINATE
C

I= 0
GO TO 10
ENTRY EDYVISO
1zl

10 C=i(CAPK/XKAP )*N
XlzEXP .-C/ETAON)
X2:1.-Xl

IF(I.EQ.0)EOYVIS2CAPK
IF(I.EQ.1) EOYVIS0IoI
IFCETA.GT.10.O1 GO TO 20 I
IF I.EQ.OI EDYVISuXKAPET A'X2", XN

IFIIEQ.1)EDTYVISXKAPX2"*XN'L1.-:'Xl1/X2'ETA Wi I
20 RETURN

END
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SUBROUTINE UOUTERI XKAP*CAPKI
D1IMENSION UC(I.00A,23CO(23,BA(2),F(4IU),OEL(.0O IA(400),SI4C0I,

IC 1400)
COMMON/fUOUT/NOvETA 4400)9OETA(4001 gflI.OO) 9ET AM vETA 0 COUTvCINv

1 STNOTPDELINUELOUTUSTARBETAC
DATA EPSOALPHAEPSfI.E-10.1.0Z,1.E-101'

C
C SUBROUTINE UOUTER COMPUTES A NUMERI:AL SOLUTION FOR THE
C OUTER PEGION VELOCITY DEFECT PROFILE GIVEN THE INPUT
C VARIABLES XKAP - VON KARMAN *CONSTANT$
C CAPK - OUTER REGION EDDY VISCOSITY *CONSTANT*
C BETAC - CLAUSER PRESSURE SRADIENT PARAMETER
C NO - NUMBER OF MESH POINTS BETWEEN THE MATCH
C WITH THE SERIES S3LUTION (FOR SHALL ETA) AND
C THE BOUNDARY LAYER EDGE.
C ON INPUT
C ETAMI MESH POIN4TS BETWEEN E1'AM AND ETAO
C DETAMI VARIABLE STEP SIZE (INITALLY UNWORN AND
c EQUAL TO H FOR FIRST 6 MESH POINTS, THEN
C SUCCESSIVELY INCREASING BY A FACTOR ALPHA)
C UII) -NUMERICAL SOLUTION FOR VELOCITY DEFECT AT ETA (I
C ETAN -MATCH POINT B3ETWEEN SERIES AND NUMERICAL SOLUTION
C ETAO LARGEST VALUE OF ErAmI
C COUT -OUTER REGION LOG-Lad *CONSTANT*
C
C FIX THE MATCH POINT

ETAH=G. S'CAPX/XKAP
C
C FIX THE OUTER VALUE OF ETA

XI=1. *2. 'BETAC

X3z-(2.*BETAC.1.)/f2o*BETACl
IF(XI.GT.O.) ETAO=SQRT(-2 .'CAPK'AL3G(EPSO)/X1)
IFIXI.EQ.0.ETAO=-SQRT (ASS(CAPK/X2) $'ALOGIEPSOI
IFLX1.LT*.aETAO.SQRTIABSSCAPK/Xl)I'EPS0O"(X3)

C
C DEFINE THE MESH
C

NI=NO-l
ETA(1)=ETAM
HutETAO-ETAM)ft1.* l .-ALP"A'O(NU-5) I111.-ALPMA)I
DO 10 IzloNI
IFlI.LT.S) DETA lIlzM
IF(I.GE.6IDETA(rIJ=ALPfA'POETA(r-1J
ETA:.I,±L ETA 1)#DETAtI)

10 CONTINUE
C
C CALCULATE THE ELEMENTS OF THE ?qIDtA;ONAL MATRIX FOR
C THE NUMERICAL SOLUTION FOR THE DEFE^T PROFILE

XP-ETA(1) +O.5*H
EPuEDYVIS IxKAP ,CAPK, XPI
EPOzEUYVISOC XKAP ,CAPK, XPI
PJPs(EPD#X1*XPI/EP
QJP=I(2/EP



00 20 J=2,Nt

IF(J.GE.61 GANl-ALPHA
X3=0.25*OETA :J)*DETAtJ)
X4=0.50OETA(J)

XP=ETA(J) oX4
EP=EOYVIS(XKAP,CAPK. XPI
EPD=EOIVISDCXKAPiCAPK, xp)
PJN=PJP
PJP=IEPO+XI*XPI/EP
QJM=-QJP/GAN
QJP=XZ/EP
AIJiu-I.-GAN-X4'IPJP-PJN) eX3'IQJPefQJN)
13(Jl= I.Ix4*pjp +x3*QJP

20 CJ) =GAH-X4*PJN*+X3*QJN
C
C DEFINE TWO INITIAL GUESSES FOR COUT
C

CO (1).I.
CO 12)uO .7SCOII)

C
C CALCULATE TWO NUMERICAL SOLUTIONS F3R U FOR ETA GREATER
C THAN ETAM FOR GUESSED VALUES OF COUrEI
C

00 36 K=192
CALL UISERIXKAPETACCO(K1,ETAN,1C(iK).UCDSEPSI

OELLI1zUC1IK)
00 46 J=2,NI

F(Jf=-B (JIZXI
40 DEL4J)=-C4Jl*DEL4J-11/XI

C
C BACK SUBSTITION
C

UC (NC, IC s.
00 50 J=29NI
JluNO-J*I
uc :JlK) -FJI) 'UC(JI*IK) OEL(JI

50 CONTINUE
C
C CALCULATE DERIVATIVE OF NMERICAL S3LJTION AT
C ETAmETAN WITH SLOPING DIFFERENCE FOR14ULA
C

UCDN-4-274.'UC l9IK).0C.*UC(2,K)-I00.OUC(3,K)
1.400.'UC(4,K1-ISO.'UCISK).24.'UC(6,K)I/U.20.'NI

C CALCULATE DIFFERENCE BETWEEN NUNERI.^AL AND SERIES DERIVATIVE
C SOLUTION AT ETAsErA".
C

IA (KPUCOS-UCON
30 CONTINUE

C COMBINE TWO NUMERICAL SOLUTIONS TO 0hlATN THE TRUE
C VALUES Of U111 AND COIJY
C
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CauT=81'CO (11 #92*(2)
00 60 J*lNG

64CONTINUE
RETURN
END
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SUBROUTINE UiSERIXKAPBETAC.COUTErA.UiUiDEPSI
DATA NMAX/IO00

C
C SUBROUTINE ULSER EVALUATES THE VELO^ITY DEFECT FUN4CTION Ul
C AND ITS DERIVATIVE U1D AT THE INPUT VALUE OF ETA, FROM
C A SERIES SOLUTION !OBTAINED BY THE NETHOD OF FROOENIOUS)
C WHICH IS VALID FOR SMALL ETA AND WHI:4 SATISFIES THE
C ORDINARY DIFFERENTIrAL EQUATION FOR THE SIMILARITY DEFECT
C PROFILE UI.
C
C INPUT PARAMETERS$ XKAP - VON KARMAN *CONSTANT*
C BETAC - CLAUSER PRESSURE GRADIENT PARAMETER
C COUT - OUTER REGION LOG-LAW *CONSTANT*
C EPS - CONVERGENCE TOLERANCE
C

XlmALOG(ETAl
X2=2.*UETAC
X3=XZ.1.
FACA=I./XKAP
F ACBzCOUT
ASUMwFACA
83U~mFAC8
ASUMD.SSUMOSG.
00 10IzlvNMAX
XI.=FLOAT 1I-11

X~z1./fXLXS5XKAPl
X?zLX2vX4.FX3)*X6
FAC~z (-FACB'X74o(X7-X6) *FACAIXSI 4ETA
FACA=-FACA 'ETA 'XT
ASUMUASUM.#FACA
SSUMSBSUM#FACB
TEST A ASUMD
TESTBOBSUMID
ASUM0=ASUMD.X5*FACA
9SUMOw9SUMD.-X54FAC8
IF(ILE.2)GO TO 10
IF:ASU4O.EQ.80)GO TO 5
IF(AS(.-TESTA/ASUMD3.GT.EPSDGO TO 10

5 IFlASl.-TESTWISLN9).LToEPS)GO TO 20
LO CONTINUE

PRINT 309 NM4AX*XKAPSETAC.COUTvETAEPS
30 FORMATl//IX9* SERIES CALCULATION I4 UiSER HAS NOT CONVERGED AFTER*

'I'.,2X,$TERMS*v//,iXv*XKAP= *,E12.593X,*SETACa *9E12.5.p
*3X,9xCOUT- sEIZ.5,3X9*1OLERANCEu tE12.5,//)
STOP

20 UI=BSU14.X1'ASUM ET

RETURN
END
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SUBROUTINE UTAUF(CAPKXKAP)
CONNON/OATA/NPARNDPXNU,~UIOXV2(90),UD(90,9OLSTRvUA(9l
*YOPL (1000) ,UAPL(1008) ,NPPT
COMMON/UOUT/NOETA(*.00I.DETA(4001.J1400),ETAM,ETAO,COUTCIN.
lSTNOTPDELINOELOUTUSTARSETAC
DATA EPS.#4AX/1.E-I,20/f

C
C UTAUF COMPUTES THE VALUE OF UTAU ITERATIVELY USING
C THE MATCH CONDITION AND ALSO THE OUTER REGION DEFECT
C PROFILE
C
C EPS - EXIT TOLERANCE FOR TWO SUCCESSIVE ITERARES FOR UTAU
C MAX - MAXIMUM NUMBER OF ITERATIONS 14 LITAUF
C

CIN=CINFtSTNOTPX(AP90. 91.1
REX=UI/XNU
USTRA-USTA R
00 10 I1,1MAX
DE LOUT=OLSTR/USTRA
OELXNml./(REX~tUSTRAJ
BETAC--DurOXODELOUT/ EU!'USTRA)
IFIBETAC.LT-.5I) BETAC-.90
CALL UOUTERfXICAPCAPKI
XA=1./ (ALOG(DELOUT/OELIMD IXIAP.CIN-COUT)
IF(I.NE.1)GO TO 20
FS=USTRA-XA
USTQ8=USTRA
USTRA=XA
GO TO 10

20 FA-USTPA-XA
Xl=USTRA-FA' £USTRB-USTRAl/IFB-FAI

* TEST=ASS I.-USTRA/Xll
IF:TEST.LT.EPSIGO TO 30
IF(ABS(FSI.LT.ABS(FAI) GO TO 15
USTR~zUSTRA

is USTRA=XI
10 CONTINUE

WRITE1G.40) MAX9USTRAXI
40 FORMAT(/91X,*ITERATION HAS FAILED T3 CONVERGE IN UTAUF,

IAFTER1.14,* ITERATIONS*.p,PXg*LAST TWO ITERATES FOR UTAU ARE*,
22E16*8.f1

30 USTARmUSTRA
RETURN
END
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FUNCTION CINF(S.TNOTP,XKAPPPLUS,;tO3TPRI
C
C '* FUNCTION CINF USES THE WALL COMPATIBILITY CONDITIONS ro
C '* CALCULATE THE INNER REGION CONSTANTS CINEP AND TNOTP FOR A
C 6 GIVEN VALUE OF S FOR BOTH THE TEMPERATURE AND THE VELOCITY
C *** PROFILE IN THE INNER LAVER OF A TURBULENT BOUNDARY LATER.
C f * ' ROOTPR =1. FOR THE VELOCITY PROFILE CASE.
C 6 * 0 PPLUS 0. FOR THE TEMPERATURE PRtOFILE CASE.
C

DATA G~,ROOTPIEPSIITNX/-0.%I'.5393I4810q179,1.?T2%5365Oq0-52,I.E-1
Q20,0f
JC= 0
Xl=O .5*S*ROOTlPRsROOTPr*%KAP

X2a2.*XKAP*S2*PPLUS/3.
ALaEXPl-l.-Xl-X2)
00 LO K=191TNX
X3=ALOG (ALP
XI.ZAL+..
AL2=AL*AL
X5=SQRT (l.-AL21
C= AL
ALaAL-(X1'x5*.Xf'x3o.l.-AL*X2'(AL24'.'ALI1I.3/X4d/(-AL'Xl/X5.D
S X3+1./AL*X2'(AL2*2.'AL&3./ XE4I))

IF(ABS(AL/C-l.)*LE.ElPSI)GO TO 20
10 CONTINUE

JCz j
20 AL2=AL*AL

X'.a1.-ALZ
TNOTP=ALZOSZ/X4
XS=SQRT (XI.)
CINF=XI/X'GM-.'ALOGS2.TNOTP1 '1.f(AL*1. I

+ +10.25'X2'(1.-9.SAL2)-PPLUS'TNOTPOXKAP9'3.MZ-..'ALJ.I/3.)/X,
CINF=CINF/XKAP
rF(JC.EQ.OIGO TO 30
WRITE (6,940)1K*TNOTP CINF, ALvC
STOP i

4.0 FORMAI~iX9 3OHNO CONVERGENCE IN ',14F AFTER,!'., 11M ITERATIONS49d',
#IX, 7NTNOTP =,EIB.5,IUx,6HCINF aEl5.5,1OX,4NAL wE15.5.10X,5HALP
.,E15.5./)

30 RETURN
E NO
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FUNCTION UP(YPvSgTNOTP*CINXKAP9P21.USI
C
C *$*FUNCTION UP CALCULATES THE TrmE-itEAN TEMPERATURE OR VELOCITY
C *'*PROFILE IN THE WALL LAYER Of A TURtBULENT BOUNDARY LAYER
C '*FOR SPECIFIED VALUES OF THE PARA4qETERS LISTED BELOW.
C *'* VP - Y*,SCALEO WALL LAYER COORDINATE
C wvw S - S ,CYCLE TIME PARAMETEI
C * 0 0 THOYP - T0.,SIMILARITY PAtAMETER
C 0 CIN -INNER REGION LOG-LAW :ONSTANT CI OR 8Z
C 0 * XKAP -KAPPA (VON-KAR"AN tZ3NSTAHT*l OR KAPPA-THETA
C * ' 0 PPLUS - WALL LATER PRESSURE GPAO!ENT PARAMETER. IPPLUS
C 4 6 v IS ZERO FOR THE TE4PERATURE PROFILE CASE.)
C 0* *NOTEvA CALL TO UP SHOULD NORMALLY BE PRECEDED BY A CALL TO
C * w CINP WHICH COMPUTES CIN AND TNOTP, GIVEN Ss
C

DATA X1,SRP-0..O453934810179,1.7253So9l55j6#
PtX3 -2.*PPLUS*Ixs-TNOTP) /3.
RtX)=CIN.I0.5ALOGI*TNOTP)-X1)/X AP0.5PPtUS*(SZ$2.TNOTPI
Q(XYZAJ$(2.'X*X+I. 1 Y*Z.'OX*A/SIPI

+ -0.75'X*ZAI/SRPIXKAPI
W(X.YZA1( '5.3.'X'X.O.?5)'Y&XtXX'Z.5)'ZA./3RPI-3.'OXX

C
C 4 PRECIS IS THE VALUE OF X SUCH T4AT EXP#.-X*Xl "AV BE COMPUTED
C w 0 WITHOUT INCURRING AN UNBEFLOW.
C

PRECIS2S. q361'.55
C

S2SvS
TPS2vS2.TNOTP
140.SQ'YP/SORT tS2*TNOTPI
HG=@.5*YP/SQRT ITNOYP)
ERFH=LERFCHI
ERFH~xERFf HO)
EXPH&EXPHOsO.
IF(H*LT.PRECISfEXPHsEXPt-NvH)
IFU40.LT.PRECIS) EXPHOUEXPq-HO'H0)
UPZTPS2*(R(S2)Q(HqERFHEXPH)4,ZIH, RFH,.EXPNi)
+ -TNOTP*fRIA.)*Q4N0,ERFNAEXPH0),ZI140,ERFHU1 EXPH40I)
IF'PPLUS.EQ.0.)GO TO 10
IF(H.LT.PRECISIGO TO 20
UP=UP-0 .5'£S2*S21-2.'S2'TNOTP)OPPLUS
GO TO 10

ZO IF:HO*LT*PREC!SIGO TO 30
WHsW(H. ERFHEXPN)
WNOaHI",,.75
GO TO 40

30 WHsWNERFHEXPM)
WHOxW HO ,ERFHOEXPNO)

40l UPsUP#TPS2'P(S2l 'WH-TNOTP*P10.)'WNO
18 UPsUIP/S2

RETURN
E NO
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FUNCTION XlIX)
DATA SRP1,GAN0,EP5I/1.fl24538509055j6,aO.577256649Lj532g6,j.E-LI

C
C 0* * FUNCTION XI EVALUATES THE TRIPLE INTEGRAL IN THE UNSTEADY
C ' w WALL LAYER NOOEL.THE TOLERANCE EPSI IS THE NUMBER OF
C 6 0 0 SIGNIFICANT FIGURES DESIRED FOR Xr AND ITS DERIVATIVE
C * * XIP AND IS MACHINE DEPENDENT.
C

xiUosIFzl
IFtX.LE.0.3 RETURN
GO TO I
ENTRY XIP
XI=0.SIF=2
IF:X.LEo.) RETURN4

1 X2EX

SUNTG.

TERN-i.
IF(X.GE.5o381 GO TO 110
IF:IF.EQ.2lJ GO TO 100
TERN-K
ALP"AI.
DO 2 1=I9"
TERMwTlERW4FAC/FLOAT C2'PI*ll
SUffSU.TER'ALP4A
IFlAS(SUM-SUNT)/SuM).Lr.EPSI) GO TD 3
ALPHA=ALPNA*1./FLOAT 1.1)

2 SUHT=SUM
3 KXZ=.25*EXP(-X2)*SUMq

RETURN
100 DO I. 12I.9"

TERN-TlERM'FAC#0FL OATt2*I- 13
SUN=5U14.TERNq/FLOAY (11
IFLABSLLSUM-SUNTI/SUNI*LT.EPSI) GO TO 5

I. SUNT=SUM
5 XZ=0.25*EXPt-X23*SUM

RETURN
110 IF4IFoEQ.2) GO TO 120

DO 6 1-1,9"i
TERN-TERHOFLOAT21-iI /FAC
TER"AlTERM/FLOAT (r)

* S~ ~ SUN-SUMeTERIA GOT7 1
7 XK~uSRPI'tALOGtX2).GAMO-SUM)1/8.

RETURN
L 20 00 a 1=I9"

TERM=TERM'FLOAT 12' -1)*F AC
IFITERM.LT.EPSII GO TO 9

a SUNwSUH.TERN
9 XIUSRPI'L1.*SUI/1.'Xl

RETURN

ENO
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SUBROUTINE LOG axINCYCvXLCHGHT)
C SUBROUTINE LOGAX PLOTS THE X-AXIS LUGARITHNICALLY

C NCYC PANMBRSO CYCLES
C XL LENGTH OF ONE CYCLE
C HGHT = HEIGHT OF AXIS LABEL
C a0 FOR NO LABEL

OIHENSION XLOG 463
TCX1=HGHT
IFCHGHTLE*O.) TCK1.XLC/20.
TCK2=TCKII2.

C SET UP EIGHT TIC MARKS PER CYCLE
00 1 1=196

I XLOGtII=ILOGIO rFLOATX.'ll)XLC
00 3 N*19NCYC
XNzN
XNNI=XN-1.
XLCNMIUXLCvXNHI
IFIN.EQ*1) CALL PLOT(XLCNNI.TCK1931
CALL PLOTSXLCNN19I.,21
00 2 12198
X=XLCNHI.XLOGEII
CALL PLOTIXU.,21
CALL PLOTIX,TCK2,2)

z CALL PLOT(XO.,21
XNLC=XN*XLC
CALL PLOTCXNLC..2)

*3 CALL PLOTAXNLCoTCK1921
IFtHGHT.LE.Iol GO TO S
NUMUIU"ONCYC
FACz3.%HGHT/7.
TNU~m.FLOAT (9-NCYCI 'FAC
NCYCPI=NCYC. 1

* DO 4 N-19NCYCIPI
NNUImNCYCPl-N
XNUM=FLOAT (WHUN) 'XLC-TNII
T NUN. TN UN*FAC
YNUN-1. 5'GHT
CALL NUMUER(XNUNTNUMHGNT.NUH,0..2H15)

4 NUPENU/lI
XSYN*XLCOFLOAT INCYC) /2.-2.*FAC
YSYN=-3. 'HGHT
CALL SYHSOLIXSYNTSYvMHNT,2HYeI.,2I

5 CALL PLOT1I.,0.,33
r RETURN

ENO
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SUBROUTINE SHFTYAX (NLNPLTPPXLIICPLHGNT)
C SUBROUTINE SNFTYAX PLOTS THE Y-AXIS FOR A MULTIPLE NUMBER
C OF CURVES ON THE SAME PLOT WITH SHIFTED Y-AXIS ORIGINS
C
C INPUT PARAMETERS
C HL NUMBER Of POINTS LABELED NOM-ZERO
C NPLTPP a NUMBER OF POINTS LABELED ZERO
C 1EQUAL. TO NUM~BER OF AXIS SHIFTS)
C XL a LENGTH BETWEEN AXIS TICS (SPACING)
C INCPLz a G
C HGHT a HEIGHT OF AXIS LABEL

TCKzuMT
IF(HGHT.LE.C.) TCI(UXL/1I.
N=NPLTPPO-NL-LI
CALL PLOT(TCK90.,3)
CALL PLOT10o.,O.29
Yze.
00 L. 11vN
Y=Y*XL
CALL PLOTLO.9Y,21
CALL PLOT(TCKvY92)

L CALL PLOT9S.9Y.Z)
IF(HGHT.LE*.l GO TO 4
NUN. NL'PINC Pt
FAC=G.*HGHT/7.
XNUN.-2o59FAC
YNUMNY-MGMT/2.
00 2 IzlNL
IFfMUM.LEe99) CALL NUNBER(XNUM.YNMNHGHTNUMO.,2H12)
IFgINU"*GT*qq) CALL NUMSERqXNUM-FA:,TNU".MGHT.NUqO.,2H1
YNUN.YNUM-XL

2 NUN.NUM-INCPL
XNUM=-I.S%5FAC
00 3 Iat,NPLTPP
CALL NUMBER(XNUNYNUMHGHTNUNA.,2H11)

3 YNUN.YNUM-XL
XSYMN.-3o*HGHT
YSYMUXL*FLOAT (N)/2 *-FAC
CALL SYMBOL(XSYNYSYMHGHT2HU+,990.,2)

4 CALL PLOT(U.,O.,31
RETURN
END
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APPENDIX D

TEST CASE

The turbulent boundary layer prediction code presented in

Appendix C is set up to guide the user in understanding the

code's operation. Comments are used to explain input variables

and to denote where major operations are taking place.

The user supplied code input begins with "PROGRAM MAIN";

an integer value for each of the model parameters K, S, and K

is read in a 312 format. This integer value determines if the

parameter is to be optimized or not; an integer value of 0 indi-

cates no optimization for the corresponding variable and I indi-

cates parameter optimization. The next variables to be read

are "ITERM", "IPRINT", "EPS", and "NA" in 214, E6.l,14 format.

The "ITERM" variable denotes the maximun number of cycles to be

performed in direct search. "IPRINT" is a print control para-

meter which determines if printing of intermediate optimization

results is included in the output, The "EPS" parameter is the

exit tolerance for convergence of the optimized parameters and

"NA" denotes the number of mesh points for the outer region

numerical solution to the similarity equation. A typical value

of "NA" is 350 to ensure good accuracy and should be increased

in applications where there is an intense velocity variation
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in the outer layer. After reading in all of these variables,

the program then calls "SUBROUTINE PROFIT" which reads in exper-

imental data pertinent to the run.

"SUBROUTINE PROFIT" begins by reading in a four digit

identification number for the data run "ID". The choice of

an identifier is up to the user's discretion and will be suc-

cessively incremented by one for each subsequent data station

that is examined in the data set under consideration. The "ID"

identifier is followed by "IUINT" which denotes whether the

input experimental data is in English (ID=O) or metrfc units

(ID=l). The selection of metric or English units is important

to the input since this determines a conversion factor which

is used in the code, A user supplied title for the data set

is then read which is printc" in the output, The number of

data stations "NSTA" is read followed by input parameters for

plotting. These plot paratiruters are read as "NCYC, NPLTPP, .-

XLC, XL, NL, INCPL" and are accompanied by self-explanatory

comments describing their function 'in the code. Their purpose A

is to allow maximum flexibility in obtaining plotted profiles 13
to meet the requirements of the user. The only plotting comment

worth mentioning here is that the "NPLTPP" parameter denotes

the number of curves to be plotted on one plot using the shifted

Y-axis method, If there are more data stations than the NPLTPP

parameter (NSTA>NPLTPP), then another plot will be drawn to

plot the remaining curves.
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The data that follows is read for each data station and

the sequence described in this paragraph is repetitive for

subsequent data stations. First, the kinematic viscosity "XNU"

is read in E1O.3 format followed by "X, UE, UTAUE, DELTA, DELSTR,

THETA, DUEDX, BETE" in 7FlO.O, FlO.2 format; these variables

represent the x-location on the wall, local mainstream velocity,

experimental value of u, experimental value of the boundary

layer thickness 6, experimental value of displacement thick-

ness 6*, experimental value of momentum thickness e, local

value of the velocity gradient dUe/dx, and the value of tne

Clauser pressure gradient parameter sc respectively. An optional

read statement follows which reads the value of mainstream

turbulence level "TUT" for examination of mainstream turbulence

effects. The number of experimental velocity data points "NDP"

is read next followed by the starting values of the model para-

meters K, S, and K denoted by xO(l), xo(2), and xO(3) respec-

tively. These starting values are used to initiate optimiza-

tion in the direct search subroutine. The experimental velocity

profile data points are then read in F10.0 format starting with

the x-coordlnate values which signify the distance from the

wall "YD". These are followed by the corresponding y-coordinates

values which denote the nondimensionalized velocities "UD"

represented by the ratio of velocity over the local mainstream
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velocity u/Ue , "SUBROUTINE PROFIT" then calls "SUBROUTINE DRSRCH"

to initiate the optimization of the profile parameters.

The direct search subroutine calls all other subroutines

to evaluate the optimization function F(x). After the optimiza-

tion has been completed, information pertinent to the model is

printed out and a plot of the analytical profile and experi-

mental data points is made. A listing of the output for one

data station is presented on the subsequent pages, An output

summary similar to that in Table 5.1 for all data stations is

printed at the end of the output listings for all data stations.

14i
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UT MAINSTREAM TURBULENCE TEST DATA - IDOL

X a 40.300 FT UE: 98.76 FT/SEC

EXPE9IENTAL VALUES
DUEDX= 3.000 1/SEC
UTAU: 1.029 FT/SEC
DELTA= .5900 IN
DELTA= .0824 IN
THETA= .0573 IN

EXPERIMENTAL VELOCITY PROFILE
61 POINTS

Y 'IN) U/UE
0.0000 0.0000
.0053 .3870
.0065 .1110
.0075 .4450
.0085 .4750
.0095 .4900
.0111 .5230
.0123 .5340
.0133 .5460
.0155 .5610
.0176 .5730
.0197 .5830
.0211 .5900
90223 .5940
.0247 .6010
.0267 .6090
.02"7 .6150
.0302 .6200
.0368 .6350
.0.38 .6500
.0506 .6650
S0566 .6750

.0633 .6840

.87C7 .695a

.0765 .7030

.083a .7140

.0907 .7230

.0963 .7290

.1034 07380

.1103 .74so
o1163 .7510
.1237 .7590
.1306 .7660
.1473 .7830
.1651 .8010
.1824 .8160
.2007 .8300
.2176 .8460
.2353 .8600
.2528 .8720
.2709 .a860
.28r? .a90
.3059 49110
.3405 .9330
.3756 .9520
.4109 .9680
. 455 .9820
•.4806 9qq1O
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.5505 .9980

.5853 1.0000

.6205 1.0000

.6553 1.0000

.6906 1.0000

.7255 1.0000o

.7604 1. 0000

.7953 .9990

.8309 1.0000
. 865:3 1.0000
.9003 099q
.9355 .9990
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I

CYCLE X!) DX!)
E a .128712E-03 .LGSOGOE-01 .10000GE-02
F 1 .103942F-03 .17600GE-01 .10000SE-02

2 .10153SE-03 .IO000E-OL .108000E-02
3 .117USE-03 ,198000E-0t .1O0000E-O2

I b .100118-03 .1843h3E-01 .LGOO0E-02
1 .100t3E-e3 .184212E-01 .IO0008E-02

4 A .100112E-03 .184110E-41 .10000E(-02
1 7 .1001A2E-03 .184131E-41 .1000GE-02

AFTER 7 ITEqATIONS IN ORSWCH, F(X)m *10006E-01 WIT4 A I PARAMETER FIT

CAPK z *RklOtE-01 S a .110254E*02 KAPPA a .41&7900E+00 UTAU a .k1lS85E*0:

CINU .573116E+01 TOPLUSm .276168E-OZ

ETiAC a 0.

MATCH CONOITION CRITERIA FOR VELOCITY PROFILE
ETAM = .0206 NI a 356 ETAO a .9208

LENGTH SCALES
DELIN u .06004 DIELOUT a .16306
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U EXPER14ENTAL PROFILE * ANALYTICAL PROFILE ' U+ DEVIATION

Y+ 0 UO/UE UD* UA/UE UAU UO' - UAU
0.o0 0 0.0000 0.00 * 0. a OD 0.00 a. c~ooOa F.

13."? .3110 9.769 .3956 9.321 * .9.3681
10.98 * .3870l 9.19 .3428 8.2 .9778291
15.5'. * .4'.50 10.57 .424.9 10.09 * .4.7b712
17.61 * .4750a 11.28 .4521 10.74 ..5163 312
19.68 f .4900 11.64 .4750 11.28 * .356673
22.99 * .15230 12.'.? 0 .5043 ±1.98 '6 .U4420 7
25.48 * .5,340 12.66 .5217 12.39 * .292495

275 .5460 12.97 .S339 12.68 U .288464
32.11 * .5610 13.32 * S552 13.18 v tU38S0D
36.1.6 U .5730 13.61 Slu .5i 3.55 U .055549
40.81 # .5830 13.84 * .832 13.85 a -.004265
43.71 * .5900 14.01 Sqo%01 14.02 U -.009292
46.20 * .5940 14.11 Sqb .56 t4.15 * -.046285
51.17 * .6010 146.27 .606? 14.39 * -.122776 '

55.31 U o69a 14.46 ..6137 14.5? -.111867
59.1.5 * .6150 14.60 * .6206 14.7t& * -.133214
62.56 U .2co 14.72 U .6254 14.85 U -.128945
76.Z3 * .6350 15.08 .6439 15.29 U -.21044
qo.73 U .6500 15.44 .59 15gs i.6? -.233038
1C5.24 * .6650 15.79 U .6732 15.99 U .194993 U

117.25 a .6750 16.03 * .6829 16.22 * -. 187 475
131.13 4 .6814 16.24 U .6929 16.45 U -.211514
146.46 A .6qs0 16.50 * .7029 16.69 U .*183,9
i58.48 .7030 16.69 * .7103 16.8? * -. 172684 *
173.60 U .7140 16.96 * .7191 17.08 -.119974 *
187.59 .7230 17.17 .7272 17.26 U -.49S266
199.49 ' .7290 17.,31 T .333 17.41 -.101808a
214*.20 ' .7,380 17.53 T7411 17.60 U -.072909
224.49 U .7450 17.69 .7464 17.7? -.0611.36
240.92 * .7510 17.83 * .7547 17.92 * -.0484.36
256.25 U .7590 15.02 .762% 18.10 * -.079563
270.96 * .7660 18.19 .7695 18.27 U -. 0839112
345.14 * .7830 18.59 0 7858 18.66 * -.065391
342.02 .8010 19.02 * .8825 19.06 * -.036515
377.8s .8160 19.38 .8181 t,9.43 U -. 050706 '-

415.76 .8300 19.71 * .8339 £9.80 U -0191610 U

451.19 -8460 20.09 U .8478 20.13 0 -. 429"5
487.44" .8600 20.42 . SE613 20.465 U -.031608
S23.69 U .8720 20.71 .871.1 20.76 * -.049303 *
S61.19 U .8860 21.01. U .s4 21.5 -.010408
S95.99 U .8980 21.32 U .8972 21.308 .019784
633.Gq * .9110 21.63 * .9080 21.56 U .071655
705.37 v .9330 22.16 U .9263 22.0 U .159205
778.06 6 V9520 22.61 * 9420 22.37, 0 .237851
851.21 * .9680 22.99 * 9551 22.68 U .30701#2
922.89 * .9820 23.32 * .9655 22.93 * .390 685
995.60 0 .99t0 23.53 q .94t 23.13 U .402199

1067.46 U .9960 2,3.65 U .9807 23.29 6 .363097
1140.40 * .99130 23.70 6 .9859 23.41 * .266886
1212.49 * 1.0900 23.75 6 .9899 23.51 0 .240 924 I
1265.41 0 1.0000 23.7s .928 23.58 0 .170250
1367.50 w 1.0000 23.75 .9950 230F,3 V .118963
1430.63 * 1.0000 23.7S S . fA6 23.6b? .0814.84
1502.93 U 1.0000 23.75 .9977 23.&9 U .05519
1575.22 0 1.0001r 23.75 .9965 23.71 v .036646
164.7.52 4 .9990 23.72 * 9990 23.7? U 000301 U

1721.27 * 1.0000 23.75 .9994 23.73 4 .O011
1792.53 * 1.OOCO 21.75 * 9999 23.7b. 6 091
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